Semantic XML Tagging of
Domain-Specific Text Archives:

A Knowledge Discovery Approach

Dissertation

zur Erlangung des akademisches Grades

Doktoringenieur (Dr.-Ing.)

angenommen durch die Fakultat fiir Informatik
der Otto-von-Guericke-Universitiat Magdeburg

von Diplom-Kaufmann Peter Karsten Winkler,
geboren am 1. Oktober 1971 in Berlin

Gutachterinnen und Gutachter:
Prof. Dr. Myra Spiliopoulou
Prof. Dr. Gunter Saake
Prof. Dr. Stefan Conrad

Ort und Datum des Promotionskolloquiums:
Magdeburg, 22. Januar 2009

Karsten Winkler. Semantic XML Tagging of Domain-Specific Text Archives: A Knowl-
edge Discovery Approach. Dissertation, Faculty of Computer Science, Otto von Guericke
University Magdeburg, Magdeburg, Germany, January 20009.

Contents

List of Figures

List of Tables

List of Algorithms

Abstract

Zusammenfassung

Acknowledgments

1 Introduction
1.1 The Abundance of Text
1.2 Defining Semantic XML Markup
1.3 Benefits of Semantic XML Markup
1.4 Research Questions
1.5 Research Methodology
1.6 Outline. e

Literature Review

2.1

2.2

2.3

2.4
2.5

Storage, Retrieval, and Analysis of Textual Data
2.1.1 Knowledge Discovery in Textual Databases
2.1.2 Information Storage and Retrieval
2.1.3 Information Extraction
Discovering Concepts in Textual Data
2.2.1 Topic Discovery in Text Documents
2.2.2 Extracting Relational Tuples from Text
2.2.3 Learning Taxonomies, Thesauri, and Ontologies
Semantic Annotation of Text Documents
2.3.1 Manual Semantic Text Annotation
2.3.2 Semi-Automated Semantic Text Annotation
2.3.3 Automated Semantic Text Annotation
Schema Discovery in Marked-Up Text Documents
SUMmMAary

vii

Xi

xiii

XV

Xvii

Contents

3

i

DIAsDEM Framework

3.1 Terminology
3.2 Objectives and Overview
3.3 Knowledge Discovery Phase
3.4 Knowledge Application Phase
3.5 Summary ...

DIAsDEM Knowledge Discovery Process
4.1 Terminology
4.2 Pre-Processing of Text Documents
4.2.1 Creating and Tokenizing Text Units
4.2.2 Extracting Named Entities
4.2.3 Lemmatizing Words and Word Sense Disambiguation
4.2.4 Establishing a Controlled Vocabulary
4.2.5 Mapping Text Units onto Text Unit Vectors
4.3 Clustering of Text Unit Vectors
4.3.1 Clustering Textual Data: An Overview
4.3.2 Selecting a Clustering Algorithm
4.3.3 Ranking Clusters of Text Unit Vectors
4.3.4 Tterative Clustering of Text Unit Vectors
4.4 Post-Processing of Discovered Patterns
4.4.1 Recommending Semantic Cluster Labels
4.4.2 Establishing a Concept-Based XML DTD
4.4.3 Semantic XML Tagging of Text Documents
4.5 Bridging Knowledge Discovery and Knowledge Application
4.6 Process Automation vs. Expert Involvement
4.7 Summary

DIAsDEM Workbench

5.1 Key Characteristics and Architecture

5.2 Overview of Core Tasks
5.2.1 Pre-Processing of Text Documents
5.2.2 Tterative Clustering of Text Unit Vectors
5.2.3 Post-Processing of Discovered Patterns

5.3 SUummary . o.o.o. ..

Experimental Evaluation

6.1 Assessing the Quality of Semantic XML Markup
6.1.1 Quality Criteria for Semantic XML Markup
6.1.2 Extending DIAsDEM Workbench

6.2 Real-World Applications of the DIAsDEM Framework
6.2.1 Semantic XML Markup for Competitive Intelligence
6.2.2 German Commercial Register Entries

57
57
62
65
67
68

71
71
5
75
80
83
86
94
99
99
107
115
124
132
133
138
143
148
152
154

157
157
160
161
166
169
171

Contents

6.2.3 News about U.S. Mergers and Acquisitions 194
6.3 Summary 206
Conclusions 209
7.1 Summary and Contributiono 209
7.2 Future Research 212

7.2.1 Structuring the Concept-Based XML DTD 212

7.2.2 Temporal Aspects of Discovered Knowledge 213

7.2.3 Towards Automated Knowledge Discovery 214
7.3 Concluding Remarks oo 215
Contents of the Supplementary Web Site 217
Specifications of Abstract Data Types 219
B.1 ADT Notation, Primitive Data Types, and Arrays 219
B.2 ADT for Strings 220
B.3 ADT for Vectors 220
B.4 ADT for Text Documents 220
B.5 ADT for Text Archives 221
B.6 ADT for Text Units. 221
B.7 ADT for Text Unit Layers 222
B.8 ADT for Concepts 222
B.9 ADT for Sets of Concepts 223
B.10 ADT for Named Entity Types 223
B.11 ADT for Sets of Named Entity Types 224
B.12 ADT for Named Entities 224
B.13 ADT for Sets of Named Entities 225
B.14 ADT for Semantically Marked-Up Text Units 225
B.15 ADT for Semantically Marked-Up Text Unit Layers 226
B.16 ADT for Semantically Marked-Up Text Documents 226
B.17 ADT for Semantically Marked-Up Text Archives 227
B.18 ADT for Conceptual Document Structures 227
B.19 ADT for KDT Algorithms 228
B.20 ADT for KDT Process Flows 229
B.21 ADT for Tokens 229
B.22 ADT for Tokenized Text Units 229
B.23 ADT for Intermediate Named Entities 230
B.24 ADT for Sets of Intermediate Named Entities 231
B.25 ADT for Text Unit Vectors 231
B.26 ADT for Intermediate Text Units 232
B.27 ADT for Intermediate Text Unit Layers. 233
B.28 ADT for Intermediate Text Documents 234

B.29 ADT for Intermediate Text Archives 234

il

Contents

B.30 ADT for Controlled Vocabulary Terms 235
B.31 ADT for Controlled Vocabularies 235
B.32 ADT for Text Unit Clusters 236
B.33 ADT for Text Unit Clusterings 238
B.34 ADT for Descriptor Weighting Schemata 239
B.35 ADT for Clustering Algorithms 240
B.36 ADT for Cluster Quality Criteria 241
B.37 ADT for Iteration Metadata 241
B.38 ADT for KDT Process Metadata 242
C List of Relevant German Vocabulary 245
List of Abbreviations 251
Notation and List of Symbols 253
Bibliography 257
Erklarung 295

v

List of Figures

1.1
1.2
1.3

2.1
2.2

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5

5.1
5.2
9.3
5.4
2.5
2.6

5.7

2.8

2.9
6.1

Taxonomy of Markup in Text Documents
Triangle of Referenceo
Systems Development Research Process and Specific Research Process . . .

Process of Knowledge Discovery in Textual Databases
Fundamental and Complementary Research Areas

Outline of the Two-Phase DIASDEM Framework
Knowledge Discovery Process of the DIASDEM Framework
Knowledge Application Process of the DIASDEM Framework

Text Document tgz Decomposed into Three Distinct Text Unit Layers . . .
Iterative Clustering in the DIASDEM Knowledge Discovery Process

[lustration of Pattern Discovery in Four Clustering Iterations
Iterative Classification in the DIASDEM Knowledge Application Process .
Generic Process of Knowledge Discovery in Textual Databases

Architectural Overview of DIASDEM WORKBENCH
Screen Shot of DIASDEM WORKBENCH GUI CLIENT
Screen Shot of the REPLACE NAMED ENTITIES 2.1 Task
Screen Shot of the BATcH ScripT EDITOR Tool
Screen Shot of the THESAURUS EDITOR Tool
Screen Shot of the CLUSTER TEXT UNIT VECTORS (HYPKNOWSYS)

Task e
Visualization of Text Unit Clustering Created by the MONITOR CLUSTER

QuALITY 2.2 Tasko
Visualization of Text Unit Cluster Created by the MONITOR CLUSTER

QuAaLITY 2.2 Task
Screen Shot of the DERIVE CONCEPTUAL DTD 2.2 Task

Screen Shot of the TAGGING QUALITY EVALUATOR 2.2 Tool

List of Tables

1.1
2.1
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

4.10
4.11

4.12
4.13

4.14

4.15

4.16

4.17

4.18

Excerpt of XML Document Containing Semantically Marked-Up Text . . .
Knowledge Discovery in Textual Databases: Tasks and Applications

Five Reuters News Items Used in Examples
Text Document tg; Decomposed into Text Unit Layer g
Tokenized Text Units after Tokenizing the Elements of Text Unit Layer g,
Excerpt from the Extended Named Entity Hierarchy and Exemplary Named
Entities
Processed Text Units of Intermediate Text Unit Layer Tg; after Extracting
Named Entities
Intermediate Named Entities Identified in Tokenized Text Units of Inter-
mediate Text Unit Layer Tg;
Processed Text Units of Intermediate Text Unit Layer Ty, after Lemmati-
zation and Word Sense Disambiguation
Excerpt of ISO-2788 Thesaurus for Text Documents tg; through tgs and
Corresponding DIASDEM-Specific Controlled Vocabulary Terms
Text Unit Descriptors of the Controlled Vocabulary Vi and Weighting
Components for Exemplary Text Documents tg; through tgs
Text Unit Vectors of Intermediate Text Unit Layer gy
Common Proximity Measures between Two Text Documents Represented
by m-Dimensional Property Vectors t;y andty
Five Relative Cluster Validity Indices
Summary of Three Proposed Clustering Algorithms w.r.t. the Fulfillment
of DIAsDEM-Specific Selection Criteria
Sentences Assigned to Qualitatively Acceptable Text Unit Cluster 4 in
Iteration 1
Sentences Assigned to Qualitatively Unacceptable, Inhomogeneous Text
Unit Cluster 7 in Iteration 1
Sentence Assigned to Qualitatively Unacceptable, Small Text Unit Cluster
0 in Iteration 1
Text Unit Descriptors Occurring in Qualitatively Acceptable Text Unit
Cluster 4 in Iteration 1
Text Unit Descriptors Occurring in Qualitatively Unacceptable, Inhomo-
geneous Text Unit Cluster 7 in Iteration 1

21

72
76
79

List of Tables

viii

4.19 Text Unit Clustering after Executing the Bisecting 8-Means in Iteration 1 .
4.20 Summary of Pattern Discovery in Four Clustering Iterations
4.21 Sentences Assigned to Qualitatively Acceptable Text Unit Cluster 1 in
Tteration 2
4.22 Sentences Assigned to Qualitatively Acceptable Text Unit Cluster 3 in
Iteration 2
4.23 Sentences Assigned to Qualitatively Unacceptable, Inhomogeneous Text
Unit Cluster 2 in Iteration 2
4.24 Summary of Semantic Cluster Labeling in Four Clustering Iterations
4.25 Sentences Assigned to Qualitatively Acceptable Text Unit Cluster 6 in
Tteration 2
4.26 Sentences Assigned to Qualitatively Acceptable Text Unit Cluster 5 in
Iteration 3
4.27 Labels in Conceptual Document Structure NewsItem Describing the Exem-
plary Text Archive
4.28 Line-Numbered, Concept-Based XML Document Type Definition of the
Conceptual Document Structure NewsItem
4.29 Semantically Marked-Up Text Units of the Text Document tg;
4.30 Line-Numbered, Semantically Marked-Up XML Document Created by Tag-
ging the Text Document tg;
4.31 Line-Numbered, Semantically Marked-Up XML Document Created by Tag-
ging the Text Document tgq
4.32 Summary of Domain Knowledge Recommended for Incorporation into the
DIASDEM Knowledge Discovery Process

6.1 Four Sentences Illustrating the Types of XML Tag Names w.r.t. Markup
Quality
6.2 German Commercial Register Entries and English Translations
6.3 Overview of Text Archives Used in the Commercial Register Case Study
6.4 Named Entity Types Extracted in the Commercial Register Case Study . .
6.5 Summary of Pattern Discovery in 12 Clustering Iterations in the Commer-
cial Register Case Study Lo
6.6 Semantically Marked-Up XML Document Comprising the First Exemplary
German Commercial Register Entry
6.7 Semantically Marked-Up XML Document Comprising the Second Exem-
plary German Commercial Register Entry
6.8 Semantically Marked-Up XML Document Comprising the Third Exem-
plary German Commercial Register Entry
6.9 Results of the Semantic XML Markup Quality Assessment in the Commer-
cial Register Case Study
6.10 News Stories about U.S. Mergers and Acquisitions
6.11 Overview of Text Archives Used in the Reuters News Case Study

124
129

List of Tables

6.12
6.13
6.14
6.15
6.16

6.17

Named Entity Types Extracted in the Reuters News Case Study 198
Summary of Pattern Discovery in Eight Clustering Iterations 200
Semantically Marked-Up XML Document Comprising the First Exemplary
Reuters News Item 202
Semantically Marked-Up XML Document Comprising the Second Exem-
plary Reuters News Item 203
Semantically Marked-Up XML Document Comprising the Third Exem-
plary Reuters News Item 204
Results of the Semantic XML Markup Quality Assessment in the Reuters
News Case Study 205

1X

List of Algorithms

4.1 DecomposeAndTokenizeTextDocuments 79
4.2 ExtractNamedEntities oo o 83
4.3 LemmatizeAndDisambiguateWords oL 86
4.4 PerformClusteringlteration (Outline) 132
4.5 PerformClusteringlteration (Complete) 138
4.6 EstablishConceptualDocumentStructure 142
4.7 CreateSemanticallyMarkedUpTextArchive 143
4.8 CreateSemanticallyTaggedXmlDocuments 147
4.9 Generic KDT Process Flow for the Knowledge Discovery Phase 149
4.10 PerformClassificationlteration 151

4.11 Generic KDT Process Flow for the Knowledge Application Phase 151

Abstract

Facing ever increasing volumes of computer-accessible textual data, semantic XML tag-
ging of text archives creates value by providing embedded metadata. In this work, names
of semantic XML tags explicitly convey informal metadata by concisely describing con-
cepts that domain experts typically associate with marked-up text units, which represent
structural document parts (e.g., sentences or paragraphs). Optionally, attributes of se-
mantic XML tags make explicit named entities (e.g., names of companies) occurring in
marked-up text units. The markup syntax is defined in a concept-based XML document
type definition, and its meaning is informally specified in the DTD documentation.

Organizations benefit from exploiting semantic metadata in two broad ways. Firstly,
semantic XML markup tends to improve the effectiveness and efficiency of information
retrieval. Secondly, semantic XML markup facilitates applications that leverage semantic
metadata in texts, such as document warehousing and information integration.

How to employ knowledge discovery techniques for transforming domain-specific text
archives into semantically marked-up XML documents? This research objective is ad-
dressed by (i) establishing a conceptual framework for semantic XML tagging of domain-
specific text archives, (ii) developing a research prototype that implements the entire
framework, and (iii) evaluating the markup quality by processing real-world text archives.

In phase one of the two-phase DIASDEM! framework, an interactive knowledge dis-
covery process discovers and semantically labels concepts occurring at the text unit level
of plain texts, derives a concept-based XML document type definition based on identified,
frequently occurring concepts and prevailing named entity types, as well as semantically
tags text documents to enable quality assessment. In the second phase termed knowl-
edge application, large volumes of thematically similar text documents are automatically
tagged by utilizing the classification knowledge acquired in phase one.

Subsequent to extensive text pre-processing, the knowledge discovery process iteratively
groups text units based on content similarity to discover both specific and general, as well
as more and less frequently occurring concepts. In each iteration, a clustering algorithm is
selected, parameterized, and executed. Framework-specific cluster quality criteria are em-
ployed to distinguish between qualitatively acceptable and unacceptable text unit clusters.
Acceptable clusters reduce the input data of the next iteration. They are automatically
labeled with default names, which are refined by domain experts. Ultimately, labels of
acceptable clusters serve as names of semantic XML tags.

!The framework for semantic XML tagging, the knowledge discovery process, and the prototype system
are named after the research project DIASDEM supported by Deutsche Forschungsgemeinschaft.

Zusammenfassung

Angesichts der stetigen Zunahme elektronisch verfiigharer Texte generiert die semantische
XML-Auszeichnung von Textarchiven Mehrwert durch direkte Einbettung von Metadaten.
In dieser Arbeit bezeichnen Namen semantischer XML-Textmarken als explizite und in-
formelle Metadaten sehr konzise Konzepte, die Experten des Fachgebiets typischerweise
mit den ausgezeichneten strukturellen Texteinheiten (z.B. Sétze oder Absétze) assoziieren.
Attribute von XML-Textmarken enthalten optional benannte Entitédten (z.B. Personen-
namen), die in ausgezeichneten Texteinheiten erwahnt werden. Die Syntax der Ausze-
ichnung ist in der konzeptuellen XML-Dokumenttypdefinition festgelegt, wiahrend deren
inhaltliche Bedeutung informell in der DTD-Dokumentation spezifiziert ist.

Organisationen profitieren von der Verwertung semantischer Metadaten in zweierlei
Hinsicht. Die semantische XML-Auszeichnung zielt erstens auf eine Verbesserung der
Effektivitat und Effizienz von Information-Retrieval-Systemen ab. Zweitens werden An-
wendungen unterstiitzt, die semantische Metadaten in Texten verwerten. Beispiele hierfiir
sind Applikationen des Document Warehousing und der Informationsintegration.

Sind Methoden der Wissensentdeckung zur Transformation fachspezifischer Textar-
chive in semantisch ausgezeichnete XML-Dokumente einsetzbar? Dieses Forschungsziel
wird durch (i) Spezifikation eines konzeptionellen Bezugsrahmens fiir die semantische
XML-Auszeichnung fachspezifischer Textarchive, (ii) Entwicklung eines den gesamten
Bezugsrahmen unterstiitzenden Prototypen und (iii) Evaluation der Auszeichnungsquali-
tat durch Verarbeitung real existierender Textarchive addressiert.

Die erste Phase des zweiphasigen DIASDEM? Bezugsrahmens ist ein interaktiver Wis-
sensentdeckungsprozess, der auf Ebene der Texteinheiten Konzepte entdeckt und inhalts-
bezogen benennt, eine konzeptuelle XML-Dokumenttypdefinition aus hiufig auftretenden
Konzepten und dominierenden benannten Entitéiten ableitet sowie Textdokumente fiir die
Qualitatskontrolle semantisch auszeichnet. In der als Wissensanwendung bezeichneten
zweiten Phase werden Texte desselben Fachgebiets durch Anwendung des in der ersten
Phase entdeckten Klassifikationswissens automatisch ausgezeichnet.

Nach umfangreicher Vorverarbeitung der Texte segmentiert der Wissensentdeckungs-
prozess Texteinheiten entsprechend ihrer inhaltlichen Ahnlichkeit iterativ, um sowohl
spezielle und allgemeinere Konzepte als auch mehr und weniger hiufig verwendete Kon-
zepte zu entdecken. Dazu wird ein Clustering-Algorithmus in jeder Iteration ausgewéhlt,
parametrisiert und ausgefithrt. Bezugsrahmensspezifische Cluster-Qualitatskriterien wer-

’Der Bezugsrahmen fiir die semantische XML-Auszeichnung, der Wissensentdeckungsprozess und
der Prototyp sind in Anlehnung an das von der Deutschen Forschungsgemeinschaft geforderte
Forschungsprojekt DTAsDEM benannt.

Zusammentassung

den angewendet, um qualitativ akzeptable von nicht akzeptablen Texteinheitssegmenten
zu unterscheiden. Die akzeptablen Segmente reduzieren einerseits die Eingabedaten der
néchsten Iteration und werden andererseits automatisch mit Namensvorschlagen etiket-
tiert, deren Bezeichner anschliefend von Experten des Fachgebiets verfeinert werden.
Diese Bezeichner entsprechen letzlich den Namen der semantischen XML-Textmarken.

xXVi

Acknowledgments

The author’s work was facilitated by Humboldt University Berlin, Leipzig Graduate School
of Management, and Otto von Guericke University Magdeburg. In particular, the author
wants to thank his adviser and mentor Myra Spiliopoulou for academic guidance and
support throughout the doctoral studies. Special thanks go to Stefan Conrad and Gunter
Saake for reviewing the dissertation. The author enjoyed working with Evguenia Altareva,
Hans-Knud Arndt, Markus Banach, Steffan Baron, Marko Brunzel, Martin Christian,
Henner Graubitz, Oliver Giinther, Kerstin Kaldenhoff, Tamara Kurz, Pierfrancesco La
Mura, Carsten Pohle, René Schult, Anja Schulz, Lutz Wille, and many other colleagues
during his doctoral studies in Berlin, Leipzig, and Magdeburg.

The research project DIAsDEM was kindly supported by Deutsche Forschungsgemein-
schaft (DFG) grant SP 572/4-1. It is gratefully acknowledged that both text archives
of the first case study in Subsection 6.2.2 were provided for research purposes by Heins
+ Partner GmbH, Bielefeld, Germany. Furthermore, it is gratefully acknowledged that
both text archives of the second case study in Subsection 6.2.3 were provided by Reuters
Limited via the Reuters Corpus, Vol. 1, English Language, 1996-08-20 to 1997-08-19.

1 Introduction

We are drowning in information but starved for knowledge.
—John Naisbitt (1982, p. 24)

How to add value to huge volumes of existing textual data? This work focuses on
one aspect of value creation: the enhancement of text documents by means of semantic
XML markup. Adopting an information systems perspective and taking a knowledge
discovery approach, we propose a novel framework for transforming large archives of
domain-specific text documents into semantically marked-up XML documents. To begin,
we briefly elaborate on the observed abundance of textual data and associated problems
in the next section. In Section 1.2, the pivotal term semantic XML markup is defined.
We discuss benefits of semantic XML markup in Section 1.3 to demonstrate the relevance
of this research. Subsequently, the research questions addressed in this work are raised
in Section 1.4. Finally, we describe the adopted research methodology in Section 1.5 and
outline the remaining chapters of this work in Section 1.6.

1.1 The Abundance of Text

Companies, non-profit organizations, as well as public authorities create, store, and update
vast, continuously growing volumes of computer-accessible data. According to Lyman and
Varian (2003), about five exabytes (i.e., 5 - 10'® bytes) of new information were produced
on print, film, magnetic, and optical storage media in 2002. Gantz et al. (2007) estimated
that the amount of digital information created, captured, and replicated in 2006 was 161
exabytes. The authors expect an increase in the annually added digital information from
161 to 988 exabytes between 2006 and 2010. Steadily falling prices for storage capacity
seem to be a major driving force behind this growth rate.

Unstructured Textual Data With respect to the degree of internal structure, database
and information retrieval researchers typically classify this huge amount of data into three
categories (e.g., Buneman et al., 1997; Halevy et al., 2003; Weiss et al., 2005, p. 2). Struc-
tured data, such as relational data, are constrained by a rigid, a priori fixed conceptual
schema. In contrast, semi-structured data (e.g., HTML files) can be informally charac-
terized as “schemaless” or “self-describing” (Abiteboul et al., 2000, p. 11). Unlike the
first category, semi-structured data do not adhere to a rigid, explicitly specified schema.
Nevertheless, they do exhibit some structure and may implicitly adhere to a loose schema
(Wang and Liu, 2000, p. 353). Finally, unstructured data adhere neither to a loose nor to

1 Introduction

a rigid schema definition. Textual content (cf. Feldman and Sanger, 2007), images, audio
files, and video sequences are examples of unstructured data.

The written word has been an important means of human communication for centuries.
According to Dorre et al. (2001, p. 465), unstructured data constitute at least 90% of the
data centrally managed by corporate information technology departments. Plain texts
and files, which can easily be transformed into texts using, for instance, optical charac-
ter recognition techniques, appear by far to be the largest proportion of the data stored
in corporate information systems. Sullivan (2001, p. 84) estimated that up to 80% of
business information consists of unstructured text, including important free-form texts
like archived business letters, e-mails, technical handbooks, annual reports, and project
memos. In addition to in-house repositories, the World Wide Web is another tremendous
resource of textual, business-related content (cf. Hackathorn, 1999, pp. 3-25). Both in-
ternal and public text archives are without doubt a major source of codified knowledge,
which potentially serves as a basis for creating sustainable competitive advantages.

Tackling Information Overload Despite, or rather due to, this plethora of textual data,
humans often desperately struggle to find relevant information when it is needed to fulfill
their duties and responsibilities. This widely recognized phenomenon is termed informa-
tion overload (cf. Edmunds and Morris, 2000; Hurst, 2007). According to Farhoomand
and Drury (2002, p. 127), information overload can be characterized in two broad ways:
Losee (1989) defined information overload as the receipt of more information than needed
or desired to function effectively and to further individual or organizational goals. Alter-
natively, Schick et al. (1990) emphasized that information overload may occur if the in-
formation processing demand on individuals exceeds their respective processing capacity.
Despite the lack of a universally agreed upon definition, studies indicate that manage-
rial information overload is a widespread issue (cf. Reuters Business Information, 1996;
Farhoomand and Drury, 2002). It often results in personal frustration, delays decisions,
and causes economic losses due to the time wasted in trying to locate relevant information.
Obviously, “more information is not always better” (Case, 2002, p. 289).

Due to the rapid growth of text repositories and the resulting demand for information
overload reduction, information retrieval and knowledge discovery in textual databases
have become active research fields in the past decade. Information retrieval denotes
the activity of locating and presenting mainly textual information that is relevant to a
user-specific information need expressed as a query (Korfhage, 1997, p. 324). The term
knowledge discovery in textual databases was coined by Feldman and Dagan (1995) and
denotes the application of knowledge discovery techniques to textual, instead of struc-
tured, data. Knowledge discovery in databases (KDD) aims at extracting previously
unknown, statistically valid, and actionable knowledge from data (Frawley et al., 1991;
Fayyad et al., 1996b). KDD combines various methods from statistics, machine learning,
artificial intelligence, and database research in a unifying, process-centric framework.

Many large archives do not contain texts covering a variety of topics, but instead com-
prise domain-specific documents of relatively homogeneous content. Examples of this

1.2 Defining Semantic XML Markup

kind of text collection are financial news, industry-specific new product announcements,
quarterly reports to shareholders, and regulatory filings. Furthermore, content-based text
classification techniques (cf. Sebastiani, 2002; Feldman and Sanger, 2007, pp. 64-81) al-
low for the extraction of documents featuring specific topics from heterogeneous archives.
Announcements of stock repurchase programs could, for instance, be extracted from a
continuous stream of general business news and stored in a separate text archive.

Although focusing on the same central topic, documents in a thematic collection tend
to cover a variety of specialized, but nevertheless frequently recurring, subtopics at finer-
grained text structures. Furthermore, documents in thematic archives often describe
similar facts (e.g., resignation of the company’s chairman) about different persons or ob-
jects (e.g., resigning chairmen of specific companies) at the sentence or paragraph level.
If domain-specific documents share an implicit thematic structure, their internal subject
matters along with referenced persons or objects can be explicated by annotating the text
accordingly. Electronic text is typically annotated by inserting so-called markup codes.
For instance, all sentences mentioning the resignation of chairmen could be annotated with
the content-descriptive markup code ResignationOfChairman. In addition, this code
may be extended to reveal details of the actual resigning manager (e.g., Person="Name:
Barry Bankrupt"). Markup adds value to archives by conveying additional, queryable in-
formation about the marked-up text passages. In particular, content-descriptive markup
facilitates highly focused information retrieval and thus alleviates information overload.
We propose a new framework for the fine-grained, content-descriptive markup of text
documents that exploits the above-mentioned particularities of domain-specific text docu-
ments.

1.2 Defining Semantic XML Markup

Before introducing our notion of semantic text annotation, we concisely explain the term
markup. Subsequently, key properties of the Extensible Markup Language (XML) are
summarized because semantically marked-up texts are stored as XML documents within
our framework. Finally, we define semantic XML markup for the scope of this work.

Markup In the pre-electronic publishing process, copy editors marked up manuscripts
by adding handwritten directions for the typesetter regarding, for instance, the desired
type fonts, their sizes, and spacings (Barron, 1989, p. 4). Taking a broader perspective,
Coombs et al. (1987, p. 934) identified punctuational markup (e.g., ending sentences with
full stops) and presentational markup (e.g., numbering pages) as the two main forms of
traditional markup used directly by authors. In both cases, scribal markup always clarifies
a written expression. Markup is not part of the textual content itself, but rather reveals
additional information about the marked-up text.

As the automation of typesetting and layout advanced, the meaning of markup was
extended as well. At that time, the term covered various kinds of markup codes, or markup

1 Introduction

Markup in Text Documents

A

Procedural Markup Descriptive Markup
Example: Left Indentation Length="lcm"

Presentational Markup Structural Markup Semantic Markup
Example: Emphasize Example: Chapter Example: PressRelease

Figure 1.1: Taxonomy of Markup in Text Documents

languages, that were inserted into electronic text to trigger particular text processing
functions (see Burnard, 1995, p. 42). Generalizing from the publishing domain, Burnard
defined markup as “any means of making explicit an interpretation of text.” A markup
language may hence be no more than a loosely accepted set of markup conventions for
encoding a specific text collection. However, Burnard underlined that markup languages
must specify the names of mandatory and optional markup elements, their syntactical
distinction from the text to be marked up, and the meaning of markup elements.

The term metadata is often informally defined as data about data (e.g., see Geroimenko,
2004, p. 94). In particular, this term refers to data that describe specific properties
of other data, such as their meaning, source, validity, or data type. Using a markup
language, metadata are added to a text document by direct insertion of markup codes,
or markup tags, at the respective places within the document (cf. Geroimenko, 2004,
pp. 91 and 94). Markup thus conveys metadata about the tagged text passages, which
are typically surrounded by a start and a matching end tag.

Although criticized, for example, by Renear (2000) and Piez (2001), markup languages
are traditionally categorized into procedural markup and descriptive markup based on
the characteristics of the metadata they convey (Goldfarb, 1981). The former exactly
specifies system-specific processing functions to be performed on the marked-up text.
In contrast, descriptive markup describes logical text elements by marking text passages
with mnemonic tags that best characterize them. Instead of giving processing instructions,
descriptive and therefore system-independent markup rather represents metadata about
the logical structure of documents or the meaning of tagged content.

Maler and Andaloussi (1996, pp. 93-103) identified presentational, structural, and
content-based text components that should be recognized during the development of spe-
cific markup languages, so-called document type definitions, for text documents. Analo-
gously, we subdivide descriptive markup in text documents into presentational, structural,
and semantic markup. Figure 1.1 depicts this proposed taxonomy of markup. Unlike pro-
cedural markup, presentational markup does not include specific processing commands
for rendering content, but rather describes the desired visualization of marked-up text
passages on an abstract and system-independent level. Structural markup reflects the
logical structure of text documents by tagging text parts, such as headings, chapters, and
paragraphs (cf. Tompa, 1989; Heeman, 1992). Finally, semantic markup characterizes the

1.2 Defining Semantic XML Markup

Synonyms: Thought, Concept; Example:
"consultancy acquired by Giant Foo Corp."

Reference

creates in mV Nifers to
Synonyms: Sign, Signifier; Synonyms: Object, Subject, Idea;
Example: "the acquisition target" Symbol e > | Referent Example: Innovative Boo Co.
indirectly stands for

Figure 1.2: Triangle of Reference (Modified from Ogden and Richards, 1994, p. 16)

surrounded text passages in terms of their actual content. Inserting semantic tags into
documents thereby aims at explicating the meaning of marked-up text.

Semantics Semantics has been the subject of thought in philosophy, linguistics, psychol-
ogy, artificial intelligence, and computer science for decades, if not centuries. Despite the
generally accepted conception that semantics concerns the relationship between linguistic
expressions and their meanings, there exists a long-standing academic dispute over the
question of explicating this relation (Géardenfors, 2000, p. 151). In linguistics, semantics
denotes the study of meaning communicated through language (Saeed, 2003, p. 3). The
difficulty in defining the meaning of meaning has resulted in various schools of linguistic
thought on semantics (Goddard, 1998, pp. 6-11). In computer science, for example, the
notion of data semantics is a matter of discussions among scholars (Sheth, 1996). In arti-
ficial intelligence, the representation of semantics in machine-processable data structures
is a fundamental research area (Woods, 1975; Sowa, 1991; Fensel, 2004).

Creating and representing meaning via signs and symbols is the subject of semiotics
(Chandler, 2002, pp. 2-7). Swiss linguist Ferdinand de Saussure (1857-1913) and Ameri-
can philosopher Charles S. Pierce (1839-1914) are regarded as the co-founders of this
academic discipline. In the semiotic sense, signs might, for example, take the form of
text, images, or sound. The semiotic approach to semantics has been adopted in, for in-
stance, linguistics (Goddard, 1998, pp. 10-11), knowledge representation (Maedche et al.,
2003, pp. 318-325), as well as library and information science (Mai, 2001). Instead of
questioning ‘what meaning is’, Goddard emphasized, semioticians scrutinize ‘how mean-
ing is conveyed’ in communication. First published in 1923, Ogden and Richards (1994,
pp. 1-32) illustrated the semiotic relationship between a symbol, its mental reference, and
the real-world referent by the triangle of reference depicted in Figure 1.2.

Whenever humans communicate about actually existing subjects, objects, or ideas (i.e.,
referents), they make use of symbols like gestures, words, or sentences. Even entire
documents can be regarded as a single sign (Mai, 2001, p. 603). As the triangle of reference
indicates, there is no direct semantic relationship between symbols and their referents.
Instead, the meaning associated with a symbol is indirectly conveyed via a reference,
or concept, created in the recipient’s mind. Humans mentally grasp an understanding
of communication symbols by interpreting them in context and by considering available

1 Introduction

background knowledge. Only concepts formed by interpretation are mentally linked to
the respective referents in reality. The meaning of a text document is thus conveyed via
concepts, which are first invoked in the reader’s mind and thereafter associated with real-
world entities and issues featured in the text. However, the mental process of concept
formation is a matter under academic discussion (Staab, 2002, p. 85).

Semantic Markup Since we adopt the semiotic approach to meaning, semantic markup
reflects concepts that adequately educated domain experts typically associate with tagged
text passages. Resembling thematic markup (cf. Bayerl et al., 2003a), semantic markup
provides a short, concept-based summary of topics, issues, and subject matters covered in
tagged content. Abstract descriptions, as Woods (1991, p. 48) noted, are a useful way of
representing concepts. Our notion of semantic markup is exemplified by the semantic tag
AcquisitionAnnouncement that marks up the sentence ‘Exampleville-based Giant Foo
Corp. announced Friday it will acquire Innovative Boo Co. headquartered in Somewhere
City for 2 million dollars.” This tag concisely summarizes the annotated text on an
abstract level by making explicit the concept ‘acquisition announcement’.

Rather than disambiguating the word sense of single terms (cf. Manning and Schiitze,
1999, pp. 229-263), we focus on semantic markup that represents metadata about text
units comprising at least a few words. Text units reflect the logical structure of text
and represent structural document parts (e.g., chapters, paragraphs, or sentences). In
this work, a text unit represents the textual content of an arbitrary structural document
part that comprises at least two consecutive words. The granularity of semantic markup
is thus determined by appropriately choosing the granularity of text units. Fine-grained
semantic markup may require text units corresponding, for example, to sentences whereas
coarse-grained semantic tags might necessitate text units comprising entire paragraphs.
Text units resemble content objects introduced by DeRose et al. (1990, pp. 3-6). The
authors modeled text as an ordered hierarchy of nested, meaningful content objects (e.g.,
chapters, sections, subsections, and paragraphs).

Besides providing a concise and concept-based summary of text units, semantic markup
makes explicit the occurrence of domain-specific named entities in annotated text units.
Named entities are specific instances of abstract classes or numerical expressions (Sekine
et al., 2002). For example, the string ‘Giant Foo Corp.” instantiates the abstract class
‘company’. Henceforth, the term named entity type denotes an abstract class (e.g., person,
company, or product) or a generic numerical expression (e.g., date or share price). For
example, the literal ‘2 million dollars’ is an instance of named entity type ‘amount of
money’. Consequently, the semantic tag exemplified above may include the referenced
deal value as well: AcquisitionAnnouncement AmountOfMoney="2000000.00 USD".

Extensible Markup Language The Extensible Markup Language, abbreviated XML, is
a metalanguage for creating specific markup languages (Geroimenko, 2004, p. 195). The
term metalanguage emphasizes that XML is not a markup language itself, but rather
defines common properties of all XML-based markup languages. In particular, the Exten-

1.2 Defining Semantic XML Markup

sible Markup Language only comprises a set of syntactic rules for defining domain-specific,
special purpose, and XML-based markup languages, such as the Extensible Business Re-
porting Language (cf. Bergeron, 2003). First published in 1998, XML is an open standard
endorsed by the World Wide Web Consortium (2000). XML is a subset of the widely
accepted Standard Generalized Markup Language (SGML; ISO 8879, 1986).

During the initial design phase of XML, the World Wide Web Consortium paid par-
ticular attention to the following requirements: straightforward usage over the Internet,
support by a wide range of applications, compatibility with SGML, and above all sim-
plicity in creating both XML documents and software for processing them. These design
objectives have largely contributed to the rapid increase in popularity and adoption of
XML in the past years. For example, McComb (2004, p. 207) stated that the Extensi-
ble Markup Language “has gone from relative obscurity to virtual ubiquity in just a few
years.” Binstock et al. (2003, pp. 4-5) positioned XML as the definitive, if not the de facto
standard for transferring data between distinct pieces of software. “The entire computer
industry as a whole, including most of the text processing community, has adopted XML”,
according to Weiss et al. (2005, p. 18), “as its standard exchange format.” The successful
emergence of this metalanguage is also reflected in the considerable number of both native
XML and XML-enabled database systems (cf. Chaudhri et al., 2003).

An XML-based markup language is commonly defined by an XML document type def-
inition (DTD) and its documentation. Each DTD specifies the structure shared by and
the text components frequently occurring in the documents to be modeled (Geroimenko,
2004, pp. 42-43). Hence, a document type definition serves as a grammar for the under-
lying XML documents (Abiteboul et al., 2000, p. 38-45). It declares syntactically valid
markup by listing elements and attributes that are allowed to occur in valid XML docu-
ments. In addition, a document type definition may define a hierarchy of nested elements
or impose an ordering on the elements in valid XML documents. According to Abiteboul
et al., a DTD can thus serve, to a very limited extent, as a schema for the data repre-
sented by XML documents. The accompanying DTD documentation is essential because
it explicates the rationale behind elements of a markup language and therefore ensures
appropriate DTD use (Maler and Andaloussi, 1996, p. 313).

Semantic XML Markup Due to its flexibility, simplicity, and widespread support, we
employ the Extensible Markup Language to represent semantically annotated text docu-
ments. For the purpose of this work, semantic XML markup' is defined as follows:

Definition 1 (Semantic XML Markup) Semantic XML markup denotes pairs of match-
ing XML start and end tags that enclose text units in documents conforming to the Ez-
tensible Markup Language. Names of semantic tags explicitly convey informal metadata
about the meaning of marked-up content by concisely describing concepts that domain

'Henceforth, the terms content-based and content-descriptive are used synonymously with semantic.
Furthermore, annotation is a synonym of markup. Moreover, the activity of inserting markup into
electronic text is synonymously referred to as marking up, tagging, or annotating text.

1 Introduction

Table 1.1: Excerpt of XML Document Containing Semantically Marked-Up Text

<BriefAcquisitionAnnouncement Company="Name: Giant Foo [AND] Name: Innovative Boo">
USA: Giant Foo to acquire Innovative Boo.</BriefAcquisitionAnnouncement>
<AcquisitionAnnouncement Company="Name: Giant Foo Corp.; Place: Exampleville [AND]
Name: Innovative Boo Co.; Place: Somewhere City" AmountOfMoney="2000000.00 USD">
Exampleville-based Giant Foo Corp. announced Friday it will acquire Innovative Boo Co. head-
quartered in Somewhere City for 2 million dollars.</AcquisitionAnnouncement><AnnualRevenues
Company="Name: Innovative Boo" AmountOfMoney="5300000.00 USD">Innovative Boo is an IT
consultancy with annual revenues of about 5.3 million dollars.</AnnualRevenues> “The acquisition
of Innovative Boo’s advanced business intelligence expertise adds a valuable new dimension to our
group” a Giant Foo spokesman said in a statement on Friday.

experts typically associate with marked-up text units. Optionally, attributes of semantic
tags make explicit named entities occurring in marked-up text units. The syntax of se-
mantic XML markup is defined in an XML document type definition, and the meaning of
semantic XML markup is informally specified in the accompanying DTD documentation.

Table 1.1 illustrates our notion of semantic XML markup. Sentences correspond to text
units, three of which are semantically annotated and one of which remains untagged. Each
semantically marked-up text unit is surrounded by two matching XML tags enclosed in
angle brackets. The concept-based summary of topics, issues, and subject matters covered
in tagged content is conveyed by the element name, which is part of XML start and end
tags (e.g., AnnualRevenues). Furthermore, most start tags have attributes whose names
correspond to domain-specific named entity types. Attribute values represent concrete
instances of named entity types identified in marked-up text units. For example, the at-
tribute name and attribute value pair Company="Name: Innovative Boo" makes explicit
the occurrence of the company ‘Innovative Boo’ in the annotated text. In this work, at-
tributes of semantic XML tags do not implicate relationships between extracted named
entities. They merely enumerate named entities that occur in semantically marked-up
text units.

Standard-conforming XML documents contain data and metadata in an easily process-
able plain text format. Despite a common misconception about so-called self-describing
XML documents, machine-readability does not imply that software is capable of auto-
matically ‘understanding’ the meaning of markup (Renear et al., 2002). In fact, XML
DTDs merely define the syntax of valid XML documents. They do not formally specify
the meaning of procedural, presentational, structural, or even semantic tags. Introduc-
ing a semantic continuum, Uschold (2003) distinguished between explicit and implicit, as
well as formal and informal specifications of semantics intended for either human or ma-
chine processing. Given an appropriate documentation regarding the meaning of markup
constructs (cf. Maler and Andaloussi, 1996, pp. 313-323), semantic XML markup as in-
troduced above is explicit and expressed in an informal manner. In contrast, implicit
semantics are shared by human consensus only whereas formally specified semantics are

1.3 Benefits of Semantic XML Markup

expressed in a formal notation for semantic representation (Woods, 1975, p. 45).

1.3 Benefits of Semantic XML Markup

Facing ever increasing volumes of computer-accessible textual data, semantically tagging
text archives adds value by providing embedded metadata about concepts and named
entities occurring in marked-up documents. Organizations benefit from exploiting se-
mantic metadata in two broad ways. Firstly, semantic XML markup tends to improve
the effectiveness and efficiency of humans in retrieving information that is relevant to
their specific information needs. Secondly, semantic metadata facilitates or perhaps even
enables additional, advanced, or automated text processing and analysis.

Retrieving Information Unlike plain texts, semantically annotated XML documents
are semi-structured data because marked-up text units are surrounded by XML tags
whose names explicitly map textual content onto content-descriptive concepts. Users may
thus take advantage of the documented DTD that defines all archive-specific concepts.
Resembling an archive-specific ‘table of contents’, each document type definition serves
as a ‘road map’ for browsing and querying the respective collection of XML documents
(Wang and Liu, 2000, p. 354). In addition to a conventional full-text search, users may
retrieve information from semantically tagged XML documents by specifying relevant
concepts and named entities occurring on the fine-grained level of text units.

From the semiotic perspective, users trying to locate information do not search for docu-
ments containing specific keywords (i.e., symbols). They rather look for documents that
deal with concepts (i.e., references) corresponding to their information needs. However,
classical models in information retrieval (IR) represent documents by a set of index terms
(Baeza-Yates and Ribeiro-Neto, 1999, p. 24). Consequently, these IR models only sup-
port keyword-based queries. Instead of merely relying on the presence or absence of index
terms, conceptual information retrieval aims at capturing the meaning behind words to
improve retrieval performance (Mauldin, 1991, pp. xvii). Focusing on domain-specific text
archives, both Mauldin as well as Osborn and Sterling (1999) reported improvements of
retrieval performance through concept-based search. Considering, for example, Table 1.1
on page 8, users of conceptual IR systems can search directly for documents mentioning
the concept ‘acquisition announcement’ instead of having to search for texts including
the index terms ‘acquisition” and ‘announcement’. The latter full-text query might, for
instance, return irrelevant texts that ‘announce’ the completion of an ‘acquisition’ instead
of reporting on first-time public statements about acquisitions.

Furthermore, the relevance of retrieved documents can be increased if queries involving
domain-specific named entities are fully supported. Huffman and Baudin (1997) addressed
the problem of finding information about important entities, such as persons and consult-
ing skills, across a large semi-structured information space. The authors reported that
providing a structured search functionality for named entities dramatically improves the

1 Introduction

retrieval quality in comparison with full-text search. In addition, Thompson and Dozier
(1999) concluded that explicit name searching can improve the retrieval performance espe-
cially if a large proportion of queries contain personal names. Considering again Table 1.1
on page 8, semantic XML markup might be exploited by explicitly searching for text units
that feature the concept ‘acquisition announcement’ and mention the company ‘Giant Foo
Corp. based in Exampleville’.

Due to the extensive XML support by commercial and free software (cf. Chaudhri et al.,
2003; Melton and Buxton, 2006), conceptual information retrieval via semantic XML
markup is applicable in both academia and industry. Nevertheless, most XML query lan-
guages focus on numerical and short character data (Fuhr, 2003). Therefore, Fuhr and
GroBjohann (2004) designed the query language XIRQL, which additionally implements
fundamental IR concepts, such as term weighting and relevance-oriented search, for ef-
fective information retrieval in text-centric XML archives. Query languages like XIRQL,
XML Fragments (see Carmel et al., 2003; Chu-Carroll et al., 2006), or NEXI (see Trotman
and Sigurbjornsson, 2005; Kamps et al., 2006) aim at crossing the structure chasm (cf.
Halevy et al., 2003) in text-centric XML documents between the semi-structured gram-
mar imposed by XML tags on one side and unstructured textual content on the other.
Consequently, query languages for text-centric XML documents enable users to fully reap
the benefits of semantic XML markup by enabling (i) conceptual information retrieval
based on content-descriptive names of XML tags, (ii) explicit queries involving named
entities listed in attributes of XML tags, as well as (iii) full-text search in both marked-up
and untagged text units.

Moreover, a considerable body of IR research is devoted to retrieval models that combine
textual content with information on the structure of documents (Baeza-Yates and Ribeiro-
Neto, 1999, pp. 61-65). Structure-aware retrieval models become semantics-aware as well
if the granularity of structural document components corresponds to the granularity of
semantic markup. Navarro and Baeza-Yates (1997) proposed a retrieval model based
on proximal nodes that supports hierarchical index structures over text. Thereby, full-
text queries can be restricted to certain structural text components, such as chapters
or sections. Extra value is added to this retrieval model by marking up structural text
units with content-descriptive XML tags. In this case, users could, for instance, search
for paragraphs discussing the concept ‘acquisition announcement’ and mentioning the
company ‘Innovative Boo’.

Leveraging Semantics Applications that support the W3C-recommended Extensible
Style Sheet Language family are capable of converting XML documents into other for-
mats, like transformed XML documents or plain text files (Geroimenko, 2004, pp. 211-
215). For that reason, semantically tagged XML documents can also be considered as
an intermediate representation for content-based text analysis, conversion, or process-
ing. McComb (2004) illustrated the broad range of use cases for leveraging semantics in
business systems, which spans from enterprise application integration, Web services to
the Semantic Web. However, our notion of semantic XML markup primarily facilitates

10

1.3 Benefits of Semantic XML Markup

document warehousing, information integration, and Semantic Web applications:

1. The term document warehouse, according to Sullivan (2001, pp. 11-20 and 524), de-
notes an integrated repository of textual documents and associated metadata, which
is set up for providing text-based decision support. Tseng and Chou (2006) stressed
the importance of document warehousing and proposed a framework that combines
text processing with multi-dimensional OLAP techniques. Document warehouses
comprise various types of documents collected from multiple sources. Essential
content-descriptive features are automatically extracted from new documents to es-
tablish associative links between related content. Semantic markup obviously con-
stitutes an advanced starting point for efficiently extracting content-based features
because it explicitly identifies themes and named entities occurring in texts. During
document loading and pre-processing, however, semantic markup must be converted
into content-based metadata that meet warehouse-specific standards regarding syn-
tax and semantics. In particular, names of semantic XML tags denoting thematic
concepts must be unambiguously aligned with organization-specific terminology for
encoding metadata stored in the repository.

2. The final goal of information integration, as Hearst (1998b, p. 12) put it, is to better
serve the information needs of users by making disparate data sources work together.
Information integration is an inherently complex task that aims at physically or
logically providing access to complementary, yet distributed or heterogeneous, data
sources (Jhingran et al., 2002, pp. 555-556). In today’s economy that is “based on
a vast infrastructure of computer networks and the ability of applications to share
data with XML,” (Halevy et al., 2006, p. 13) emphasized that “data needs to be
shared appropriately between different service providers, and individuals need to
be able to find the right information at the right time no matter where it resides.”
Due to the abundance of textual content, increasing research efforts have been di-
rected towards integrating unstructured, semi-structured, and structured data. For
example, Bergamaschi et al. (1999), Somani et al. (2002), Grossman and Frieder
(2004, pp. 211-255), as well as Chakaravarthy et al. (2006) addressed this research
challenge. Kashyap and Sheth (2000, pp. 1-87) emphasized the critical role of se-
mantic, in particular content-dependent metadata in brokering information across
heterogenous data sources.

Semantic XML markup explicitly provides content-descriptive metadata. Thus,
embedded semantic XML tags along with a fully documented XML document type
definition may be leveraged to integrate semantically semi-structured XML archives
with related semi-structured or structured data. For example, announcements of
mergers and acquisitions, as exemplified in Table 1.1 on page 8, might be inte-
grated with a relational database providing detailed financial statements of compa-
nies. Analogous to document warehousing, syntax and semantics of disparate data
sources have to be aligned either manually or by employing existing schema match-
ing algorithms (e.g., cf. Aguilera et al., 2002; Poggi and Abiteboul, 2005; Tansalarak

11

1 Introduction

and Claypool, 2007; Do and Rahm, 2007).

3. Berners-Lee et al. (2001, p. 29) envisioned a “new form of Web content that is mean-
ingful to computers” and that “will unleash a revolution of new possibilities.” The
so-called Semantic Web strives for associating information published on the existing
World Wide Web with machine-understandable metadata about its meaning. Based
on content-descriptive metadata, semantic-driven applications can deliver superior
solutions for accessing information, managing knowledge, or doing business on the
Web (Sheth et al., 2002; Fensel et al., 2003, pp. 1-25). However, commercially viable
applications ultimately depend on the large-scale availability of semantically anno-
tated data (Handschuh and Staab, 2003a, pp. v—vii). Although mostly considered
as semi-structured data due to HTML encoding, Web pages typically lack explicit
semantic metadata about textual content.

Again, semantic XML markup may serve as a basis for efficiently augmenting text-
ual content with machine-understandable metadata for use on the Semantic Web.
This use case, nevertheless, requires the mapping of explicit, yet informal, semantic
XML markup onto a formal representation of meaning intended for machine process-
ing (cf. Uschold, 2003; Stuckenschmidt and Harmelen, 2005, pp. 3-61). Providing a
shared and common understanding of a domain, formal ontology languages are an
accepted means of representing formal semantics (McGuinness, 2003; Fensel, 2004).
Hence, concepts and named entities (i.e., semantic XML markup) can either be
mapped onto concepts listed in existing ontologies or may constitute pre-processed
input data to algorithms for learning formal ontologies from text (cf. Maedche, 2002;
Cimiano, 2006).

In addition, concepts and named entities made explicit by semantic XML markup may
serve as semantically enriched input data for the purpose of knowledge discovery in text-
ual databases (e.g., cf. Feldman and Dagan, 1995; Feldman and Sanger, 2007) and content
analysis (e.g., cf. Krippendorff, 2004). Finally, semantic XML markup constitutes ben-
eficial metadata in the context of integrating database and IR techniques for structured
document handling (e.g., see Sengupta, 2000; Zhang et al., 2001; Cui et al., 2003). For
example, Amer-Yahia et al. (2005) and Weikum (2007) discussed the necessity of truly
merging database and information retrieval technologies, which have evolved largely inde-
pendent of each other. Analogous to social tagging mentioned by Weikum (2007, pp. 26—
27), large volumes of real-world data, which are capable of bootstrapping joint database
and IR research efforts, can be generated by automatically transforming unstructured
texts into semi-structured, semantically tagged XML documents.

1.4 Research Questions

As discussed in the preceding section, semantic XML markup facilitates the retrieval,
integration, analysis, and utilization of textual content. Before organizations can reap

12

1.4 Research Questions

the benefits accrued from content-descriptive metadata, however, documents have to be
enriched by inserting high-quality, consistent semantic markup. This task poses a serious
obstacle, the semantic annotation bottleneck, to leveraging semantics in information sys-
tems. In principle, this obstacle can be overcome by manual, semi-automated, or entirely
automated annotation of text documents. In reality, the immense human efforts required
for manual annotation restrict the applicability of the first approach to a few archives of
limited size, but exceptional importance (Butler et al., 2000). Due to the costs and te-
dious efforts involved, humans understandably tend to prefer exploiting semantic markup
to creating it by manual annotation (Erdmann et al., 2001; Tallis et al., 2001).

The huge volumes of existing legacy textual data and continuously published text docu-
ments necessitate an approach to semantic XML markup that simultaneously minimizes
human involvement and provides high-quality markup. This challenge may be effectively
addressed by adopting the process-centric framework for knowledge discovery in textual
databases (Frawley et al., 1991; Feldman and Dagan, 1995; Fayyad et al., 1996b). Conse-
quently, the following primary research question is addressed by this work:

Can techniques for knowledge discovery in textual databases be employed to
convert large archives comprising domain-specific text documents of homoge-
neous content into semantically marked-up XML documents?

A knowledge discovery approach to semantic XML tagging requires the identification
of frequently occurring thematic concepts at the text unit level. In addition, discovered
concepts must be concisely described by semantic labels that reflect topics, issues, and
subject matters mentioned in respective text units. Furthermore, domain-specific named
entities have to be extracted from text units because they serve as attribute values of
semantic XML tags. Subsequently, an archive-specific XML document type definition has
to be derived, in which names of semantic XML tags correspond to labels of frequently
occurring concepts. On the basis of actually occurring concepts and named entities, text
files must be automatically transformed into semantically tagged XML documents that
adhere to the derived DTD. Finally, the markup quality has to be evaluated to assess the
statistical validity of the generated semantic XML markup. Consequently, the primary
research question stated above implies the following secondary research questions:

1. How to discover frequently recurring thematic concepts at the text unit level?
2. How to assign semantic, content-descriptive labels to identified thematic concepts?
3. How to extract domain-specific named entities from text units?

4. How to establish a domain-specific, concept-based XML document type definition
that reflects the thematic structure on the text unit level by enumerating frequently
occurring thematic concepts and associated named entity types?

5. How to automatically convert text documents into semantically annotated XML
documents by marking up text units according to the concept-based XML DTD?

13

1 Introduction

6. How to evaluate the quality of automatically created semantic XML markup?

We intentionally focus on marking up domain-specific archives comprising documents
of relatively homogeneous content, as opposed to general text collections. Thereby, the
chance of actually finding frequently recurring concepts among text units is sufficiently
high. Developing a document type definition always requires designers to limit the scope of
considered document types to avoid a “lack of commonality” (Maler and Andaloussi, 1996,
pp. 79-80). In addition, existing vocabulary collections compiled from domain-specific
languages for special purposes (Bowker and Pearson, 2002, pp. 25-41) may be utilized for
discovering thematic concepts. To ensure a high quality of semantic XML markup, domain
knowledge supplied by human experts is incorporated, if necessary and appropriate. Due
to the costs of utilizing expert knowledge, however, we focus on processing sufficiently large
text collections only. When tagging large archives, the valued benefits of automatically
creating semantic XML markup are likely to outweigh the initial costs of adopting an
inherently semi-automated knowledge discovery approach.

1.5 Research Methodology

A research methodology is a specific combination of process, methods, and tools that
are employed in conducting research (Nunamaker et al., 1991, p. 91). Different research
methodologies have been advocated for the field of information systems (Galliers, 1991).
To review this wide range, Galliers distinguished scientific, or empirical, (e.g., surveys)
from interpretivist (e.g., action research) approaches to information systems research.

Referring to March and Smith (1995), Hevner et al. (2004) argued that acquiring knowl-
edge in information systems involves two distinct, but complementary, research paradigms:
behavioral science and design science. Rooted in natural-science research, the former seeks
to develop and justify theories that explain or predict organizational and human phe-
nomena occurring in the context of information technology. The latter, problem-solving
paradigm of research is rooted in engineering. Design science seeks to create innovative
artifacts (e.g., ideas or products) that contribute to the effective and efficient employ-
ment of information technology in organizations. According to March and Smith (1995,
p. 253), behavioral or “natural science tries to understand reality” whereas “design science
attempts to create things that serve human purposes.”

Following the design-science paradigm, the research underlying this work was specifi-
cally conducted by adopting the systems development methodology advocated by Nuna-
maker et al. (1991). Systems development, as the authors emphasized, is a key ele-
ment in forming a well-grounded research program in information systems. This multi-
methodological approach to information systems research encompasses four interdepen-
dent research strategies: theory building, systems development, experimentation, and
observation. However, artifact development assumes a central role in this integrated
approach because it bridges theory building, which conceptualizes artifacts, and experi-
mentation/observation, which measures the impact of artifacts.

14

1.5 Research Methodology

Systems Development

Specific Research Process
Research Process

Construct a Frame-

ConstructaConcep- | _ _ _ _ _ _ ________ work for Semantic
tual Framework XML Tagging of Do-
* main-Specific Texts

Develop a System
Architecture

1
1
¢ | Develop a Research
Analyze and Design ' Prototype that
theSystem [~~~ """ °7 cTTT T Implements the
* 1 Entire Framework
:
Build the (Proto- '
type)System | T T 7T 7
* Evaluate Framework
Observeand Evalu- | | and Prototype by
ate the System Processing Real-
World Text Archives

Figure 1.3: Systems Development Research Process (Source: Nunamaker et al., 1991,
p. 98) and Specific Research Process

The systems development methodology comprises a generic research process (Nuna-
maker et al., 1991, pp. 97-101), which is depicted on the left side of Figure 1.3. As
indicated by solid arrows, this process is inherently iterative in nature and thus under-
pins the idea that artifact design is an iterative search process for satisfactory solutions
(Hevner et al., 2004, pp. 88-90). Once a new, creative, and important research question
is identified, theory building corresponds to constructing a conceptual framework that
must be useful in organizing ideas and suggesting actions. Systems development com-
prises three stages: developing the system architecture, system analysis and design, and
constructing the (prototype) system. Prototypes allow researchers to quickly assess the
feasibility of conceptualized solutions. After building the (prototype) system, it must be
thoroughly evaluated in the experimentation/observation phase. Evaluation results have
to be interpreted with respect to the established conceptual framework. Since systems
development is an evolutionary process, evaluation results are typically fed back to theory
building and the development stages or may even raise new research questions.

By means of dashed lines, Figure 1.3 additionally maps the generic systems development
research process onto the specific process adopted within this research. As depicted on
the right side of Figure 1.3, this specific process consists of three main phases. Concern-
ing theory building, the main contribution of this work is a novel conceptual framework
for semantic XML markup of domain-specific text archives. This framework represents
a knowledge discovery approach to semantic XML tagging. Constructing the conceptual

15

1 Introduction

framework addresses the first five secondary research questions raised in the preceding
Section 1.4. The systems development phase corresponds to designing and building a
research prototype that implements the entire conceptual framework. Obviously, pro-
totype development is an essential prerequisite for evaluating the proposed conceptual
framework. Subsequently, the quality of automatically created semantic XML markup
is evaluated by employing the prototype system to semantically annotate real-world text
archives. Insights from observing and evaluating the system are used to incrementally
refine both the framework and the prototype. The evaluation phase addresses the sixth
secondary research question raised in the preceding subsection.

1.6 Outline

How to employ knowledge discovery techniques for transforming domain-specific text
archives into semantically marked-up XML documents? This overall research objective
is henceforth addressed by (i) establishing a conceptual framework for semantic XML
tagging of domain-specific text archives, (ii) developing a research prototype that imple-
ments the entire framework, and (iii) evaluating the quality of semantic XML markup by
processing real-world text archives. The remainder of this work is organized as follows:

Theory Building Before discussing our approach to semantic XML tagging, the under-
lying discipline knowledge discovery in textual databases (KDT) has to be introduced.
Chapter 2 (Literature Review) thus gives an overview of knowledge discovery in texts
with emphasis upon the KDT process. In addition, basic techniques for pre-processing
and storing textual data as well as extracting named entities are briefly explained. Subse-
quently, research from three relevant areas is reviewed: concept discovery in textual data,
semantic text annotation, and schema discovery in marked-up documents.

An integrated overview on the approach taken shall be given before discussing details
of individual research issues. Therefore, Chapter 3 (DIAsSDEM? Framework) defines fun-
damental terminology and presents an introductory overview of our two-phase framework
for semantic XML tagging of domain-specific text archives. In phase one, an interactive
knowledge discovery process (i) discovers and labels concepts occurring at the text unit
level of plain texts, (ii) derives a concept-based XML document type definition on the
basis of identified concepts and prevailing named entity types, as well as (iii) semantically
tags all text documents to enable an assessment of markup quality. In the second, rather
application-oriented phase of our framework, large volumes of domain-specific text docu-
ments are automatically tagged by utilizing classification knowledge acquired in phase
one.

Simultaneously providing high-quality semantic XML markup and reducing human ef-
forts requires a dedicated knowledge discovery solution. Chapter 4 (DIAsDEM Knowledge

2The framework for semantic XML tagging, the knowledge discovery process, and the prototype system
are named after the research project DIASDEM supported by Deutsche Forschungsgemeinschaft.

16

1.6 Outline

Discovery Process) contributes to theory building by proposing a specific knowledge dis-
covery process for the semantic XML annotation of text documents, which constitutes
phase one of our conceptual framework. Chapter 4 provides details about pre-processing
textual data, searching for patterns (i.e., classification knowledge), and post-processing
discovered patterns. Concretely, solutions are suggested for the following research ob-
jectives: Identification of frequently occurring concepts at the text unit level, extraction
of named entities from text units, semantic labeling of discovered concepts, as well as
establishing a concept-based XML DTD, and converting training texts into semantically
marked-up XML documents. Finally, the chapter discusses the challenge of balancing the
need for KDT process automation with the required incorporation of domain knowledge.

Systems Development To experimentally evaluate the framework specified in Chap-
ters 3 and 4, a functional prototype system must be implemented that supports all fea-
tures of the DIASDEM framework for semantic XML tagging of domain-specific text
archives. To that end, Chapter 5 (DIASDEM Workbench) gives an overview on the pro-
totype system developed as an integral part of this research. Chapter 5 outlines system
requirements and describes the architecture of DIASDEM WORKBENCH. Subsequently,
the core functionality of this research prototype is explained.

Experimentation/QObservation Ultimately, the applicability of our framework can only
be verified in case studies involving real-world text archives. Therefore, Chapter 6 (Ex-
perimental Evaluation) initially establishes an evaluation schema for assessing the quality
of semantic XML markup. Specifically, the overall markup quality is determined by ap-
propriately assigned semantic XML tags and correctly extracted named entities.

Competitive intelligence denotes both the process of conducting a competitive analysis
and the resulting actionable information (Herring, 1988, p. 5). Particularly, competitive
analysis is a phase in the strategic management process. This phase covers the system-
atic and legal collection, storage, and analysis of publicly available information about
current and potential competitors, other stakeholders, and the environment to anticipate
trends and strategic moves (Winkler, 2003, pp. 4-5). A successful competitive analysis
strongly depends on leveraging computer-accessible texts about trends and stakeholders.
For example, Sullivan (2001, pp. 407-436) and Chen et al. (2002) consistently stressed
the importance of knowledge discovery methods in the competitive intelligence field.

For that reason, we selected real-world archives from the competitive intelligence domain
to assess the quality of automatically created semantic XML markup. In Chapter 6, two
case studies of transforming text archives into semantically marked-up XML documents
are thus described. We processed a collection of German Commercial Register entries
in the first case. English news items about United States mergers and acquisitions were
semantically annotated in the second case study.

Looking Forward Chapter 7 (Conclusions) summarizes the contribution of this work
and indicates promising research challenges to enhance the conceptual framework and
thereby improve the capabilities of DIASDEM WORKBENCH.

17

2 Literature Review

This chapter sets our research in the context of related work. Firstly, Chapter 2 introduces
the research area of knowledge discovery in textual databases and surveys important text
processing techniques from two other relevant disciplines. Secondly, this chapter outlines
the state of research on concept discovery in text documents, semantic text annotation, as
well as schema discovery in marked-up documents. The chapter summary differentiates
our objectives and our chosen approach from related work.

Research into identifying concepts in text documents is highly related to semantic XML
markup on an abstract level because semantic markup, as defined in Section 1.2, explicates
concepts that domain experts typically associate with marked-up text units. Research
on semantic text annotation offers various notions of semantic markup and above all
distinct techniques for actually annotating documents, which are surveyed in detail as well.
Furthermore, research into deriving a conceptual schema from marked-up documents is
relevant because our framework outputs a concept-based XML document type definition.
In addition, related work affecting only specific aspects of our conceptual framework (e.g.,
cluster labeling) is discussed in the respective chapters.

2.1 Storage, Retrieval, and Analysis of Textual Data

Since the DIASDEM framework adopts a knowledge discovery approach to semantic XML
tagging, the underlying discipline is introduced in the next subsection. The following two
subsections survey highly relevant methods developed by the information retrieval and
information extraction research community, respectively.

2.1.1 Knowledge Discovery in Textual Databases

Feldman and Dagan (1995) coined the term knowledge discovery in textual databases
that refers to applying knowledge discovery techniques to textual, instead of structured,
data. Within the underlying discipline of knowledge discovery in databases, the nontrivial
process of identifying implicit, previously unknown, statistically valid, and actionable
patterns in data constitutes the object of research (Frawley et al., 1991; Fayyad et al.,
1996b). A pattern is an expression in some language that describes a specific subset of
data without exhaustively enumerating all facts or that represents a model applicable to
a data set (Fayyad et al., 1996a, pp. 40-41). Before elaborating on knowledge discovery
in detail, three important terms remain to be delineated for the scope of this work.

2 Literature Review

Data, Information, and Knowledge Typically stored in databases or flat files, data
henceforth denote a collection of facts, observations, or measurements (Fayyad et al.,
1996b, p. 6). Textual data, and synonymously text, stand for a specific data category:
written or recorded spoken natural language. When referring to data, emphasis is placed
on the mere existence, processing issues, or syntactic properties of facts, observations,
or measurements. Therefore, their actual meaning is not considered at all. In contrast,
information is described as “data endowed with relevance and purpose” (Drucker, 1988,
p. 46) and “data that change individual decisions” (Hackathorn, 1999, p. 33). For example,
raw data is transformed into purposefully organized information by contextualization,
categorization, analysis, error removal, or summarization (Davenport and Prusak, 2000,
pp. 3-5). When referring to information, both semantic aspects and the subjectively
perceived relevance of data are thus emphasized.

Davenport and Prusak (2000, p. 5) pragmatically defined knowledge as “a fluid mix
of framed experience, values, contextual information, and expert insight that provides a
framework for evaluating and incorporating new experiences and information.” The au-
thors underlined that knowledge is mainly created by thinking or the interaction of human
beings. Besides residing in the human mind, knowledge is often embedded in documents
or organizational routines. Taking the KDD perspective, Fayyad et al. (1996b, pp. 8-9)
argued that patterns in data represent knowledge if they exceed a user-imposed, domain-
specific interestingness threshold. Within this work, however, knowledge encompasses
only patterns that are sufficiently interesting, meaningful, and relevant to affect organi-
zational processes. This notion is influenced by Hackathorn (1999, p. 33): “Knowledge
is information that changes organizational processes.” Consequently, patterns in data
constitute information if they make sense and are relevant to individuals only.

Knowledge Discovery In contrast to straightforward computations (e.g., of descriptive
statistics), knowledge discovery is a nontrivial process since it involves search or inference
algorithms to find new, previously unknown patterns in data (Fayyad et al., 1996a, p. 41).
To constitute knowledge, extracted patterns must be valid and actionable. The former
criterion requires patterns to be statistically valid, with a certain degree of certainty, on
data not utilized during the discovery phase (Vazirgiannis et al., 2003, p. 13). The latter
criterion stipulates that patterns must be ultimately understandable and potentially use-
ful to the human target group. The overall value of patterns is captured by the important
notion of interestingness (cf. Silberschatz and Tuzhilin, 1996; Geng and Hamilton, 2006)
that combines novelty, validity, simplicity, and usefulness. Silberschatz and Tuzhilin dis-
tinguished objective interestingness measures (e.g., statistical validity) from subjective
ones (e.g., unexpectedness and actionability). Independent of concretely applied meas-
ures, humans ultimately set the desired interestingness threshold, above which extracted
patterns are considered to be information or valuable knowledge.

Knowledge discovery in textual databases (KDT) is an inherently multi-disciplinary
research area, which borrows methods from statistics, machine learning, artificial intelli-
gence, and database research. In addition, analyzing unstructured text requires techniques

20

2.1 Storage, Retrieval, and Analysis of Textual Data

Table 2.1: Knowledge Discovery in Textual Databases: Tasks and Applications

Knowledge Discovery Task Exemplary KDT Application

Exploratory Data Analysis Kohonen (2001, pp. 296-299) constructed a self-organizing map that
allows a visual, content-based exploration of 6,840,568 patent abstracts.

Descriptive Modeling Forman et al. (2006) employed a clustering algorithm to identify common
and emerging issues in textual, product-related help-desk records.

Predictive Modeling Weiss et al. (2005, pp. 172-178) described a text categorization system
that automatically assigns pre-defined topic names to newswire articles.

Discovering Rules Using an algorithm for association rules discovery, Feldman et al. (1998)
found frequently occurring concepts in 51,725 financial news stories.

Retrieval by Content Employing text classification based on decision trees, Lee and Lu (2003)
designed an adaptive recommender system for mobile news services.

from computational statistics, information extraction, statistical linguistics, and informa-
tion retrieval (Renz and Franke, 2003, pp. 2-5). According to Renz and Franke, knowledge
discovery in texts is different from KDD because it usually involves high-dimensional, but
rather sparsely populated, data sets. Furthermore, features of data sets representing text-
ual content are often semantically interrelated. For example, the two features representing
the terms ‘company’ and ‘firm’ are obviously related. However, after appropriately pre-
processing textual data to alleviate text-related particularities, standard KDD algorithms
may be employed to solve KDT tasks as well.

Based on the objectives of humans analyzing data, Hand et al. (2001, pp. 11-15) iden-
tified five generic knowledge discovery tasks. Firstly, exploratory data analysis refers to
the interactive, mostly visual exploration of massive data sets without having clear ideas
regarding the patterns to look for. Secondly, descriptive modeling aims at globally de-
scribing a data set or the respective process creating data. Thirdly, predictive modeling
is employed to fit a global model to a data set that permits the value of one attribute
to be predicted given values of other features. Fourthly, the goal of discovering rules is
to infer rule-based descriptions of interesting, but locally occurring, phenomena in large
data sets. Finally, retrieval by content supports users in finding data that are similar to
a given pattern of interest. Table 2.1 summarizes an application of each task.

The KDT Process As illustrated in Figure 2.1, discovering knowledge in textual data
is modeled as a multi-step process (cf. Fayyad et al., 1996b, pp. 9-11). This process is
inherently interactive and iterative since “one cannot expect to obtain useful knowledge
simply by pushing a lot of data to a black box” (Mannila, 1997, p. 42). Dashed lines in
Figure 2.1 indicate possible iterations and loops between any two phases. For example,
interpreting discovered patterns may cause the user to modify parameters and re-execute
a text mining algorithm. The process starts with setting the overall analysis goals and
ends with implementing discovered knowledge to change and improve, respectively, or-

21

2 Literature Review

6. Interpretation
and Evaluation

' 5. Text Mining
1. Goal Setting 4. Transformation Knowledge
3. Pre-Processing Discovered
2. Selection Transformed Patterns
Pre—-Proc d Text
Text
Target Text A
Available

A

1

1

1

Text A ¥ ¥

7. Implementation
. . :
1

- ——— = — —

LI

1
1
[

Figure 2.1: Process of Knowledge Discovery in Textual Databases (Adapted and Ex-
tended from Fayyad et al., 1996b, p. 10)

ganizational processes. The dotted line in Figure 2.1 implies that acting on identified
knowledge may raise new questions and necessitate further analyses.

After acquiring a thorough domain understanding, the objectives of discovering knowl-
edge are synchronized with goals pursued by the target group (Fayyad et al., 1996b,
p. 10). Subsequently, textual data required for the analysis is selected and/or sampled
from archives comprising available text documents. Thereafter, selected textual data is
cleansed and pre-processed. Besides standard KDD pre-processing procedures (e.g., re-
moving noise if appropriate), this phase includes various operations to transform text
into a numerical representation suitable for applying knowledge discovery algorithms.
Important pre-processing operations are introduced in Subsection 2.1.2. Subsequent to
pre-processing text, the transformation phase comprises data reduction and projection,
which strongly depend on the specific objectives of knowledge discovery. For example,
pre-processed textual data may be transformed by reducing the typically huge number of
features that may initially represent thousands of individual words. However, dimension-
ality reduction algorithms must preserve important semantic and domain-specific charac-
teristics of original text documents as much as necessary.

Although both words are often used interchangeably, text mining is not a synonym
for knowledge discovery in textual databases in this work. The former term describes
an important, but arguably not the most important, phase of the knowledge discovery
process. The text mining step encompasses three main activities. At first, the overall
objective (e.g., finding typical service calls to improve help-desk applications) must be
mapped onto a particular text mining method, such as clustering (Fayyad et al., 1996b,
pp. 10-11). Second is choosing and parameterizing a suitable text mining algorithm. For
instance, the k-means clustering algorithm may be selected to discover k£ = 100 typical
service calls. Thirdly, the chosen algorithm is executed to search for, or infer, ultimately
interesting patterns in pre-processed and transformed data. As depicted in Figure 2.1,
extracted patterns (e.g., kK = 100 clusters) are interpreted and evaluated based on a priori
chosen interestingness measures. In this decisive phase, useless patterns are separated

22

2.1 Storage, Retrieval, and Analysis of Textual Data

from novel and interesting ones that constitute the desired knowledge. Evaluation results
often trigger iterations whereby preceding process steps are executed once again. Finally,
a successful knowledge discovery process is terminated by acting on extracted, novel, and
interesting patterns to attain the initial organizational objectives.

2.1.2 Information Storage and Retrieval

Information retrieval systems process text documents and requests for information by
identifying and subsequently retrieving documents in response to information requests
(Salton, 1989, pp. 229-231). Textual documents are retrieved based on their similarity to
an information need expressed as a query. To meet an information request, the similarity
between stored documents and a query is determined by comparing values of attributes
(i.e., content identifiers) that are attached to stored documents and the query. Content
identifiers attached to documents are known as descriptors, index terms, or keywords.

Document Pre-Processing By assigning content identifiers to documents (i.e., by in-
dexing), unstructured textual content is transformed into structured document surrogates
(Salton, 1989, pp. 275-277). Storing and successfully retrieving texts thus involves ex-
tensive pre-processing of documents to assign them adequate content identifiers. These
pre-processing techniques are highly applicable for discovering knowledge in textual data
(Renz and Franke, 2003, p. 4). The knowledge discovery approach to semantic XML
tagging pursued in this work is no exception to the rule. Baeza-Yates and Ribeiro-Neto
(1999, pp. 165-173) discussed five main operations for pre-processing text:

1. Lexical text analysis converts character-based textual data into a sequence of clearly
separated words, numbers, and punctuation marks. For example, multi-token words
(e.g., ‘news agency’) and sentence boundaries are identified during the tokenization
process (Manning and Schiitze, 1999, pp. 123-131 and 134-136).

2. Eliminating stopwords means removing words that occur too frequently to be good
discriminators from the document-specific list of potential content identifiers. Mean-
ingless articles, prepositions, and conjunctions are stopword candidates because they
are typically useless for text retrieval due to their high frequency.

3. Stemming the remaining words is performed by replacing terms with their respective
root forms. Stemming algorithms (e.g., Porter, 1980a) reduce syntactical diversity,
but preserve the meaning of terms. For example, inflected verb forms (e.g., ‘acquired’
and ‘acquiring’) are substituted by their infinitives (e.g., ‘acquire’).

4. Selecting index terms refers to carefully choosing words or multi-word phrases that
finally serve as content identifiers for text documents. Index terms were manually
selected by domain experts in the past. Nowadays, algorithms exist that automati-
cally extract useful index terms from text (Moens, 2000, pp. 77-102).

23

2 Literature Review

5. Constructing term categorization structures refers to establishing a controlled vo-
cabulary. For instance, thesauri (ISO 2788, 1986) provide a standard vocabulary
for consistent indexing, searching, and automatic query expansion. A thesaurus
includes domain-specific words along with related terms (e.g., synonyms).

Vector-Space Model Various mathematical models have been suggested to numerically
represent text (Baeza-Yates and Ribeiro-Neto, 1999, pp. 24-61). However, the vector-
space model introduced by Salton (1968, pp. 236-243) is an efficient document represen-
tation for information retrieval and knowledge discovery (Sullivan, 2001, pp. 328-337).

The vector-space model assumes a collection comprising n € N text documents and a set
D = {dy,ds,...,d,} of m € N distinct, a priori selected content identifiers and descrip-
tors, respectively (Salton and Lesk, 1968). Text document i (i = 1,2,...,n) is modeled as
an m-dimensional property vector t; = (7,1, T; 2, ..., Tim). Coefficient 7, ; (7 =1,2,...,m)
represents the weight of content descriptor d; in document 7. Weight 7; ; should reflect
the importance, the presumed value of content descriptor d; for retrieving text document
i (Salton and Buckley, 1988, p. 516). Consequently, the entire text collection is modeled
as an (n X m) matrix T = [t1,ts,-- ,t,]". The rows of matrix T represent n document
vectors. Columns of matrix T correspond to m content descriptors.

According to Salton and Buckley (1988, pp. 516-517), term weighting involves three
components to ensure a high overall retrieval performance. The term frequency component
is solely based on the frequency of descriptor d; in text document 7 whereas the collection
frequency component depends on the frequency of d; in the entire collection. Additionally,
the normalization component accounts for varying document sizes in a collection. Salton
and Buckley therefore emphasized that creating a weighting scheme requires considering
vocabulary characteristics, the frequency of collection updates, and the variation of docu-
ment size. For average text collections, Baeza-Yates and Ribeiro-Neto (1999, pp. 29-30)
argued, the best known weighting schemes calculate weights by multiplying the normalized
term frequency ntf(é, j) of content descriptor d; in document i by the inverse document
frequency idf(j) of content descriptor d; in the collection:

tf(, j) '

iy = (i) G) = s

-log (2.1)

n
df(j)

In Expression 2.1, tf(4, j) denotes the frequency of descriptor d; in document . Fur-
thermore, df(j) denotes the number of documents in the entire collection that contain
descriptor d;. Intuitively, the best index terms “occur frequently in individual documents
but rarely in the remainder of the collection” (Salton, 1989, p. 280). To balance these two
effects, weights computed according to Expression 2.1 increase if descriptor d; frequently
appears in text document ¢ or if d; rarely occurs in the entire text archive T.

The popular vector-space model has many advantages for storing and retrieving textual
data. It is simple, fast, and offers a retrieval performance that tends to be superior to,
or almost as good as, alternative models (Baeza-Yates and Ribeiro-Neto, 1999, p. 30). A

24

2.1 Storage, Retrieval, and Analysis of Textual Data

disadvantage is the assumed mutual independence of content descriptors. However, Baeza-
Yates and Ribeiro-Neto argued that this assumption is negligible for practical applications.
Since text is mapped onto a bag-of-content-descriptors representation, any information
concerning the ordering of occurring descriptors is intentionally disregarded. This fact
must be taken into account for specific knowledge discovery applications.

2.1.3 Information Extraction

Research in information extraction (IE) investigates how to identify facts of interest in
text documents (cf. Pazienza, 1997, p. v). Grishman (1997, p. 10) defined information
extraction as “identification of instances of a particular class of events or relationships in
natural language text” to extract relevant attribute values of the event or relationship.
The specification of one particular event or relationship is referred to as a scenario. Taking
a broader perspective, Moens (2006, p. 4) defined IE as the task of making unstructured
data sources “suitable for information processing tasks” by identifying, classifying, and/or
structuring specific information therein into semantic classes that are known in advance.
After retrieving relevant documents using IR systems, information extraction techniques
are capable of identifying a priori specified facts inside the documents (Cowie and Lehnert,
1996). In an information retrieval context, as Moens (2006, p. 13) emphasized, information
extraction techniques facilitate a highly focused retrieval.

Since information extraction aims at finding facts inside documents, only text passages
are analyzed in detail (cf. Moens, 2006, p. 7). In particular, IE algorithms attempt
to transform factual information into a structured representation by finding values for
predefined slots, or attributes, of scenario-specific templates (Manning and Schiitze, 1999,
p. 376). An empty template comprises attribute names that correspond to important
features of the respective scenario. A filled template denotes the final, tabular information
extraction output, which represents a concrete scenario occurrence in terms of attributes
and their extracted values. The information extraction task of filling a priori defined
templates is related to identifying semantic concepts in text. Thus, representative research
projects on extracting relational data from texts are reviewed in Subsection 2.2.2.

Between 1987 and 1998, seven Message Understanding Conferences, abbreviated MUC-
1 through MUC-7, facilitated the application-oriented research on information extraction
from unstructured texts (Jackson and Moulinier, 2002, pp. 76-78). Sponsored by the
U.S. Defense Advanced Research Projects Agency (DARPA), researchers from academia
and industry were invited to solve several predefined information extraction tasks (e.g.,
extracting details of terrorist attacks) in a competitive environment. The availability of
real-world training and test documents allowed a rigorous evaluation of all solutions. The
quality of information extraction is assessed in terms of precision, recall, and metrics de-
rived thereof (Grishman, 1997, pp. 20-21). Precision is defined as the ratio of correctly
filled template slots and the total number of slots filled. In contrast, recall denotes the
percentage of correctly filled template slots to the total number of slot fillers in the respec-
tive text. Analogous to information retrieval, there exists a trade-off between precision

25

2 Literature Review

and recall in IE as efforts to increase recall tend to worsen precision. The evaluation of
IE techniques is discussed by Moens (2006, pp. 179-197) in great detail.

After retrieving news items about corporate takeovers, for example, information extrac-
tion techniques are capable of extracting detailed data that explicate who acquired whom
for what price. An instantiated scenario template CorporateAcquisition hence contains
values filling the slots AcquiringCompany, AcquiredFirm, and MonetaryDealValue. By
employing appropriate IE algorithms, which are reviewed by Moens (2006, pp. 23-150)
as well as Feldman and Sanger (2007, pp. 119-145), the filled template CorporateAcqui-
sition: AcquiringCompany="Giant Foo"; AcquiredFirm="Innovative Boo"; Mone-
taryDealValue="2000000.00 USD" can be extracted from the press release illustrated
in Table 1.1 on page 8. Since named entities serve as slot fillers, recognizing them is an
important subtask of information extraction.

Named Entity Recognition According to Sekine et al. (2002), named entities (e.g.,
‘Giant Foo Corp.” and ‘5.3 million dollars’) are specific instances of named entity types
that are either abstract classes, like ‘company’, or numerical expressions, such as ‘amount
of money’. Unlike complex events or scenario patterns (e.g., ‘corporate acquisition’),
abstract classes denote basic objects (e.g., ‘product’) or subjects (e.g., ‘person’). Sekine
et al. proposed a hierarchy of about 150 named entity types whose instances are likely
to occur in general news stories. In our framework, domain-specific named entities are
extracted from text units as they are potential attribute values of semantic XML tags.
Recognizing named entities requires extracting various types of proper names and spe-
cial expressions (Grishman, 1997, p. 15). The latter (e.g., telephone numbers and dates)
are typically identified by applying carefully handcrafted regular expressions (Manning
and Schiitze, 1999, p. 131). Algorithms designed to extract and disambiguate proper
names often rely on various dictionaries, rules, and heuristics (e.g., Volk and Clematide,
2001; Navarro et al., 2003). Other approaches to recognizing proper names exploit tech-
niques from computational linguistics and machine learning to minimize costly human
efforts (e.g., Bunescu and Mooney, 2004; Turmo et al., 2006; Downey et al., 2007). Jack-
son and Moulinier (2002, p. 77) summarized that extracting proper names of persons,
companies, and places from English newswire texts “was more or less a solved problem”
in 1998. Feldman and Sanger (2007, p. 96) and Moens (2006, p. 203) argued analogously.

2.2 Discovering Concepts in Textual Data

Most automatic indexing techniques select natural language index terms directly from
documents to be indexed (Moens, 2000, pp. 77-102). Thereby, index terms in the form of
single words or multi-word phrases are assumed to appropriately reflect the subject mat-
ters of indexed documents. As introduced in Section 1.3, conceptual information retrieval
pursues a different approach by capturing the meaning behind often ambiguous words.
To that end, semantic concepts are assigned to documents instead of indexing selected

26

2.2 Discovering Concepts in Textual Data

natural language terms. Woods (1997, pp. 6-12), for instance, considered conceptual
indexing a better way to organize knowledge than classical, term-based indexing.

In the context of indexing, the term concept is standardized to denote a unit of thought
whose semantic content can be re-expressed by a combination of other and different con-
cepts (ISO 5963, 1985). In this section, however, the term concept, or synonymously
semantic concept, pragmatically denotes any abstract and unambiguous representation of
the meaning of textual content. This view corresponds to the notion of concepts adopted
by Loh et al. (2000), Nasukawa and Nagano (2001, p. 969), as well as Feldman and
Sanger (2007, pp. 6-7). In particular, semantic concepts are distinct from individual, of-
ten ambiguously used words. Unlike, for example, Thompson and Dozier (1999), identified
named entities (e.g., names of companies) are not considered to be concepts henceforth.

Before reviewing related research explicitly aimed at semantic text annotation in Sec-
tion 2.3, we subsequently survey research whose objective is to discover semantic concepts
in text documents. Although these techniques neither output semantically tagged XML
documents nor insert semantic annotations into text files, they are related to the main
research question pursued in this work. In general, identifying semantic concepts in text
documents is a prerequisite for their content-based markup. Therefore, we discuss rep-
resentative work in topic discovery, extraction of relational tuples from text, as well as
approaches to inferring taxonomies, thesauri, and ontologies from text documents.

2.2.1 Topic Discovery in Text Documents

Topics of text documents concisely characterize the subject matters, or themes, discussed
therein. Identifying document-specific topics hence corresponds to answering the ques-
tion of what the respective document is about. Hutchins (1997) discussed the notion of
aboutness, or topicality, in the context of subject indexing. According to Hutchins, it is
a common view that the aboutness of documents is expressed by index terms. Typically,
index terms are keywords and phrases that are significant indicators of the content and
thereby provide a thematic summary of the document. The traditional approach to in-
dexing thus requires human indexers who are capable of stating what a document is about
by formulating a summary and selecting good index terms.

Moens (2000, pp. 12-13) distinguished the intrinsic subject, aboutness, or topicality
of documents from their context-specific meaning. A document usually has a relatively
permanent and agreed upon aboutness whereas its concrete meaning depends on charac-
teristics of the particular communication context. Specifically, the meaning of documents
is determined by several cognitive factors like task, knowledge, or attitude of readers. The
objective notion of aboutness resembles semantic metadata, as defined in Section 1.2.

In our framework, names of semantic XML tags convey the meaning of marked-up text
units by summarizing concepts that domain experts typically associate with marked-up
content. Identifying topics in a collection of text documents is a related research question
because extracted topic descriptors may serve as semantic markup for the respective text
units. However, we only consider semi-automated and automated approaches to topic

27

2 Literature Review

identification that are designed to discover new, previously unknown topics in an archive.
Thereby, we deliberately exclude manual techniques as well as the broad range of text
classification algorithms (cf. Sebastiani, 2002; Feldman and Sanger, 2007, pp. 64-81).
Unlike our exploratory framework, text classification is focused on assigning documents
to existing, pre-defined topic categories. Techniques for summarizing or abstracting text
documents (cf. Moens, 2000, pp. 133-154) are not discussed either because condensed,
but nevertheless rather lengthy, summaries cannot serve as semantic XML tags.

The aboutness of text documents can be determined at different granularity levels
(Moens, 2000, p. 25). On the one hand, overall topics characterize subject matters of the
entire text document. Subtopics represent subjects, or themes, of certain text passages
on the other hand. Following this observation, we subsequently survey representative
research into identifying overall topics at the text level. Thereafter, specific research into
discovering topics of more fine-grained text structures is discussed. Complementarily to
extracting individual topics, Subsection 2.2.3 surveys techniques for inferring complex
taxonomies, thesauri, and ontologies from concepts occurring in a text collection.

Topic Discovery at the Text Level Clustering, or unsupervised learning, is a common
approach to topic discovery. A clustering algorithm groups documents such that texts
assigned to the same cluster are more similar than texts assigned to different clusters (cf.
Jain and Dubes, 1988, pp. 1-6). Documents assigned to the same cluster are assumed to
cover similar topics (e.g., cf. Chin et al., 2006; Pons-Porrata et al., 2007), which neverthe-
less remain to be characterized in a content-descriptive and human-understandable way.
However, (semi-) automatically extracting the aboutness, or topicality, of documents is
not always the objective of text clustering. Finding groups of similar documents without
explicitly specifying their salient topics is often sufficient in exploratory data analysis.
SCATTER/GATHER is a cluster-based approach to browsing large document collections
(Cutting et al., 1992). Initially, the entire document collection is segmented (i.e., scat-
tered) into a small number of clusters, whose prevalent topics are visualized in the form
of content-descriptive summaries. On the basis of these cluster-specific topic descriptions,
the user selects one or more interesting clusters for further browsing. Subsequently, the
documents of all selected clusters are merged (i.e., gathered) to form a new sub-collection
of texts that constitutes the input to the next scatter/gather iteration. Cutting et al.
summarized the main topics of each cluster in a so-called cluster digest. A generated
cluster digest contains the titles of documents near the cluster centroid and a list of words
that occur most frequently in documents assigned to the respective cluster. Inspired by
SCATTER/GATHER, Agrawal et al. (2000) presented the interactive and iterative cluster-
ing algorithm C-EVOLVE, which, for efficiency reasons, directly generates cluster digests
instead of clustering the entire (sub-) collection of text documents. Cluster digests com-
prise a limited number of representative text documents to provide cluster descriptions.
After clustering a text archive to discover topics, Ertoz et al. (2004) characterized the
topicality of each cluster by extracting words occurring most frequently in the respective
texts. Analogously, Karypis and Han (2000b) as well as Dhillon and Modha (2001) selected

28

2.2 Discovering Concepts in Textual Data

the ten highest weighted features, which are typically keywords, in the centroid vector of
each text document cluster to summarize its aboutness. Describing salient topics in text
document clusters only on the basis of frequently occurring keywords is a common, but
by no means the most effective, solution. To that end, related work on cluster labeling is
discussed in detail in Subsection 4.4.1.

Based on the self-organizing map algorithm for unsupervised learning (Kohonen, 2001),
WEBSOM is another technique for thematically organizing large text collections (Kaski
et al., 1998; Kohonen, 2001, pp. 286-299). WEBSOM maps documents onto a two-
dimensional array of nodes (i.e., clusters) such that documents assigned to the same node
feature similar topics. Texts assigned to nearby nodes of the array are more similar than
texts assigned to distant map nodes. Hence, the two-dimensional document map provides
an intuitively understandable, graphical, and content-based segmentation of the entire
text archive. Some nodes of the map, so-called landmarks, are automatically labeled to
quickly provide insights into the topics discussed in texts assigned to the respective map
area (Kohonen, 2001, pp. 295-296). Landmark labels are words that frequently occur in
articles within the labeled map area and rarely elsewhere. Alternatively, the LABELSOM
algorithm may be utilized to automatically label the nodes of document maps (Rauber,
1999; Rauber and Merkl, 2003). Topic descriptions induced by LABELSOM comprise
features, typically keywords, of document vectors that are most relevant for their mapping
onto a particular node of the document map.

Another strain of research into topic discovery referred to as statistical topic modeling is,
for example, represented by Griffiths and Steyvers (2004) as well as Newman et al. (2007).
Both research groups employed a generative, probabilistic model for document collections
(i.e., latent Dirichlet allocation) proposed by Blei et al. (2003). This approach resembles
model-based clustering (cf. Han and Kamber, 2006, pp. 429) as it requires learning topic-
word and document-topic probability distributions for a text archive in an unsupervised
manner (Newman et al., 2007, p. 367). Statistical topic modeling simultaneously discovers
topics in text collections, characterizes topics by their most important words, and assigns
degrees of topic membership to documents. Newman et al. (2007, p. 369) emphasized the
necessity to manually assign meaningful labels to topics.

The research area of topic detection and tracking focuses on temporal aspects of event-
based topic discovery (cf. Allan, 2002). This research community aims at identifying
reports about distinct real-world events in a continuous stream of broadcast news stories.
Consequently, the input stream of news is initially separated into discrete stories (Allan,
2002, pp. 1-26). This important pre-processing task is related to discovering topics at the
text passage level discussed below. Thereafter, new topics are recognized in the stream of
separated news stories, which may, for instance, be triggered by a political event. Allan
et al. (2002, pp. 219-222) characterized topics by the most important keywords, named
entities, or noun groups. In parallel, all incoming follow-up news stories of known topics
are clustered into groups of stories discussing the same topic. Tracking topics refers
to identifying topic-specific follow-up reports on the basis of a few sample documents.
Essentially, topic detection and labeling algorithms (e.g., Ponte and Croft, 1997; Mori

29

2 Literature Review

et al., 2006; Pons-Porrata et al., 2007) are fine-tuned to process continuous streams of
incoming text documents. They are not directly related to our work on semantic XML
markup because we assume the entire text archive of training documents to be accessible.

Topic Discovery at the Text Passage Level The above-mentioned techniques for iden-
tifying salient topics at the text level can also be applied to determine the aboutness of
a priori defined text passages. To that end, structural text units at the required gran-
ularity level (e.g., sections or paragraphs) are extracted from each text document prior
to topic identification. Unlike this straightforward approach to topic discovery at the
passage level, however, identifying the internal, rather fine-grained thematic structure of
documents requires discovering distinct topics within the text as well as segmenting the
text based on topic changes (Li and Yamanishi, 2003, pp. 521-522).

When retrieving information from collections of documents comprising a variety of
subtopics, the retrieval performance can be considerably improved by employing passage
retrieval strategies (Salton et al., 1993; Callan, 1994; Jiang and Zhai, 2006, p. 296). In-
stead of searching for complete documents, passage retrieval systems locate finer-grained
text segments that match a particular information need. To determine subtopical text
segments in long documents covering subjects of principal interest, Salton et al. (1996)
proposed computing the pairwise similarity between text segments of varying, pre-defined
length. Pairwise similarities of text segments exceeding a threshold are edge weights of
an undirected graph, and text segments are represented by graph nodes. Subsequently,
themes are identified by a graph-based clustering algorithm that extracts highly connected
subgraphs comprising at least three nodes. Salton et al. did not consider techniques for
labeling themes to characterize their subject matters.

TEXTTILING is a technique for structuring expository text documents into contiguous,
non-overlapping, multi-paragraph units covering the same subtopic (Hearst and Plaunt,
1993; Hearst, 1997). In particular, Hearst (1997) introduced the final TEXTTILING al-
gorithm for subdividing texts into subtopic segments, which identifies major topic shifts
based on lexical co-occurrence patterns. After tokenizing a text document, the algorithm
computes a similarity score for each pair of consecutive sentences. Subtopic boundaries
are inserted between adjacent text segments whose similarity score is a local minimum
with respect to the left and right neighboring scores. Hearst deliberately excluded the
question of characterizing, or labeling, subject matters of discovered subtopic segments.

Reynar (1999) introduced two algorithms for identifying topic boundaries without ad-
dressing the question of topic labeling either. The first algorithm is solely based on
analyzing word frequency statistics whereas the second algorithm utilizes features like the
occurrence of domain-specific cue phrases (e.g., ‘brought to you by’) or the repetition of
named entities to compute the likelihood of an existing topic boundary between two text
segments. Combining the TEXTTILING approach and previous work on text summariza-
tion, Mather and Note (2000) proposed an algorithm that first discovers topic boundaries
and then labels subtopic regions with frequently occurring noun phrases.

Li and Yamanishi (2003) emphasized that topic analysis consists of two main tasks:

30

2.2 Discovering Concepts in Textual Data

topic identification and text segmentation based on topic changes. To that end, Li and
Yamanishi proposed an unsupervised statistical learning approach based on a stochastic
topic model. After text segmentation, each identified subtopic block is labeled with words
that are closely related to the prevailing topics therein. In this context, Jiang and Zhai
(2006) presented a method based on hidden Markov models that detects both thematically
coherent and relevant passages of varying lengths in response to a query.

Assessment As defined in Section 1.2, names of semantic XML tags concisely summarize
the topics, or subject matters, of marked-up text units. More specifically, semantic XML
tags reflect semantic concepts that domain experts typically associate with marked-up
content. Regardless of the granularity level, topic discovery in text documents is thus
an important body of relevant research. Consequently, clustering techniques that group
texts or text segments based on their content are reviewed in detail in Section 4.3 as
unsupervised learning is employed in our knowledge discovery process as well. Due to
the overall objective of semantic XML tagging, however, our research requires a different
approach to topic discovery than pursued by most techniques discussed above. First of
all, identified topics must be characterized in a concise, content-descriptive, and human-
comprehensible way because topic labels subsequently serve as names of semantic XML
tags. Furthermore, input documents are not segmented based on domain-specific subtopic
regions although we aim at discovering topics at the passage, or text unit, level. Instead
of marking up consecutive subtopic regions of varying length, our framework is designed
to semantically annotate pre-defined structural text units (e.g., sentences).

2.2.2 Extracting Relational Tuples from Text

Documents often comprise factual data, such as announcements of corporate takeovers
or bankruptcies. In these cases, actually rather structured facts are conveyed via un-
structured natural language as text documents are overwhelmingly written by human
authors for primary consumption by human readers. As introduced in Subsection 2.1.3,
information extraction techniques aim at filling pre-defined, scenario-specific templates
(e.g., ‘acquisition announcement’) from texts. After extraction, factual data can be
stored in a relational database to facilitate, for example, information integration and
queries using the Structured Query Language (SQL). The IE task of filling templates
by identifying instances of events and relationships in natural language text is synony-
mously referred to as extracting relational tuples' from text. For example, the schema
AcquisitionAnnouncement (AcquiringCompany: string, AcquiredCompany: string,
MonetaryDealValue: string) defines the relation AcquisitionAnnouncement C string

!'Notation: Given n € N arbitrary, not necessarily distinct, and atomic domains D; (i = 1,2,...,n),
relation R C Dy X ... x D, is defined as the Cartesian product of n domains or as a subset thereof (cf.
Codd, 1970, 1990). Each domain D; is associated with a descriptive attribute name a; € {a1,...,a,}.
The schema of relation R is denoted by R(a;: D1, ...,a,: Dy). An n-ary element (dy,...,d,) € R with
attribute values d; € D; is referred to as a tuple of relation R.

31

2 Literature Review

x string x string. Tuples of this relation, like ("Giant Foo", "Innovative Boo",
"2000000.00 USD"), can be extracted from business news stories.

Searching for tuples of pre-defined relations in text documents is aimed at identifying
occurrences of related semantic concepts, as defined in Section 1.2. Hence, appropriately
chosen and content-descriptive names of relations, such as AcquisitionAnnouncement,
correspond to semantic concept labels. Analogously, attribute values of identified rela-
tional tuples may constitute named entities, whose types are characterized by attribute
names (e.g., AcquiringCompany). Text documents may thus be transformed into seman-
tically annotated XML documents. Unlike semantic XML markup in our framework,
however, tuples do define a semantic relationship between their attribute values.

Research into extracting tuples from documents is only relevant if the proposed solu-
tions explicitly address the question of processing plain, completely unstructured natural
language text. Consequently, research on creating source-specific information extraction
procedures, so-called wrappers, is deliberately excluded from the following discussion if
the techniques are only applicable to semi-structured documents, such as HTML files
published on the World Wide Web (e.g., Chang et al., 2006; Zhao and Betz, 2007). Abol-
hassani et al. (2003) distinguished the knowledge engineering approach from the machine
learning approach to information extraction. The former relies on extraction rules that are
manually created and updated by knowledge engineers. In contrast, the machine learning
approach infers extraction rules from annotated training documents. Additionally, the
fully automated approach to information extraction aims at both discovering relations
that exist in text corpora and extracting tuples thereof.

Knowledge Engineering Approach According to Jackson and Moulinier (2002, p. 81),
the FINITE STATE AUTOMATON TEXT UNDERSTANDING SYSTEM (FASTUS; Appelt
et al., 1995; Hobbs et al., 1996) is a representative of information extraction systems that
were employed in the series of Message Understanding Conferences. FASTUS represents
information extraction rules as a cascade of finite state automata that match incoming
text against expressions of regular languages handcrafted by knowledge engineers. Each
finite state automaton maps output data from its predecessor onto a more structured
representation, which in turn constitutes input for the next information extraction phase.

Earlier stages of the FASTUS extraction process recognize smaller and domain-inde-
pendent linguistic objects. After tokenizing character sequences into tokens, multi-token
words and proper names are identified. Sentences are decomposed into noun groups and
verbs groups by means of finite state grammars to avoid computationally expensive full
syntactic parsing (Grishman, 1997, pp. 21-23). Unlike other partial parsing approaches
(e.g., Neumann and Piskorski, 2002), FASTUS does not employ part-of-speech tagging
algorithms for reasons of scalability. Later IE process stages take these linguistic objects as
input and match them against finite state rules to fill slots of domain-dependent templates.
By employing elaborate rules, extracted relational tuples from distinct text passages are
merged into a composite template if they provide information about the same entity or
event. Finally, the system outputs relational tuples in the form of filled, domain-dependent

32

2.2 Discovering Concepts in Textual Data

templates. FASTUS performed well in MUC-6 by achieving 76% precision at 74% recall
in the template-filling task.

Machine Learning Approach Soderland (1999) introduced the WHISK system capa-
ble of learning information extraction rules from sentences of unstructured text. These
IE rules are system-specific regular expressions, whose matches correspond to tuples of
pre-defined relations. In a pre-processing phase, sentences are syntactically parsed. In
addition, terms may be mapped onto semantic classes that denote groups of synony-
mously used terms. Both syntactic and semantic metadata are valid elements of regular
expressions to be learned. WHISK incorporates a supervised learning algorithm to in-
duce IE rules and thus requires hand-tagged training examples. However, human efforts
are reduced by iteratively asking the knowledge engineer to annotate only texts likely to
improve the performance of the learning algorithm. WHISK attained 69% precision at
46% recall when applied to extract tuples of the management succession relation Succes-
sionEvent (Organization, Post, PersonOut, PersonIn) from news stories.

Soderland (1999) adopted a top-down approach to rule induction, which starts with
an ‘empty’ information extraction rule matching all training sentences. Subsequently,
this rule is iteratively extended by adding discriminative terms that serve as appropriate
boundaries for the values of relational tuples to be extracted. In contrast to top-down
rule induction, Califf and Mooney (2003) presented the bottom-up relational learning
algorithm RAPIER, which incorporates techniques from inductive logic programming sys-
tems to induce IE rules from hand-tagged training documents. This ‘specific to general’
approach generalizes an initial set of rules, each of which represents a filled template oc-
curring in a training text. Attaining 86% precision at 60% recall, RAPIER scored slightly
better than WHISK in extracting 17-ary tuples from textual job postings.

Unlike the above mentioned machine learning approaches to information extraction,
the SNOWBALL system requires only a few user-supplied tuples of the relation, whose
tuples occur in plain texts (Agichtein and Gravano, 2000; Yu and Agichtein, 2003). The
user-provided exemplary tuples, like ("United Nations", "New York"), of the target
relation, like Headquarter (Organization, Location), are input to an algorithm that
infers rules for extracting them from the text collection. Applying these induced rules to
the same documents typically results in new tuples of the target relation. This process
is iteratively repeated whereby only sufficiently reliable tuples and patterns are employed
in the next iteration to ensure a high information extraction performance. Agichtein
and Gravano (2000) reported 76% precision at 45% recall when employing SNOWBALL to
identify tuples of the relation Headquarter in a large collection of news stories.

Etzioni et al. (2004, 2005) introduced the KNOWITALL system that extracts facts (i.e.,
tuples of relations) from textual Web pages in an unsupervised, domain-independent, and
scalable manner by extensively leveraging existing Web search engines. The generate-
and-test architecture resembles the iterative SNOWBALL approach, but it further reduces
human efforts by inducing the required seed tuples from generic, domain-independent
extraction patterns. Inspired by Hearst (1992), KNOWITALL initially utilizes extraction

33

2 Literature Review

patterns that exploit part-of-speech tags to generate candidate facts. Subsequently, the
plausibility of candidate facts is tested by using pointwise mutual information statistics
and treating the Web as a massive corpus. The system is capable of instantiating n-ary
relations with arbitrary, user-supplied relation names and multiple, user-given predicate
arguments, yet the authors experimentally focused on unary relations.

Suchanek et al. (2006) presented another approach that combines linguistic and sta-
tistical analysis to extract tuples of a priori specified, binary relations from textual Web
pages. Instead of limiting the linguistic feature space to part-of-speech information (e.g.,
cf. SNOwWBALL and KNOWITALL), the authors proposed utilizing deep syntactic analy-
sis features as input to a supervised machine learning technique. The prototype system
LEILA requires a definition of each target relation in the form of a specifically pro-
grammed “function that decides into which of” four “categories a pair of words falls”
(Suchanek et al., 2006, p. 713). To set up the semantic search engine NAGA (cf. Kas-
neci et al., 2007), the prototype system was employed to extend the knowledge base
YAGO, which was initially established from structured data sources by carefully, semi-
automatically combining rule-based and heuristic methods (cf. Suchanek et al., 2007).

Fully Automated Approach To reduce the large number of search engine queries re-
quired by KNOWITALL (cf. Etzioni et al., 2005) and to eliminate the need to specify
relation names and predicates, Banko et al. (2007) and Etzioni et al. (2007) introduced
the OPEN INFORMATION EXTRACTION paradigm. It obviates relation specificity by
automatically discovering possible relations of interest in one pass over the corpus with-
out requiring any human input. The prototype system TEXTRUNNER comprises a self-
supervised learner, a single-pass extractor, and a quality assessor module. Based on a
small corpus sample annotated by a deep linguistic parser, the learning module automat-
ically identifies and labels trustworthy and untrustworthy candidate relations between
noun phrases. This labeled data set, whose features can be evaluated at extraction time
without a parser, is input to training a Naive Bayes classifier used by the extractor mod-
ule. Relation extraction and assessment is performed akin to KNOWITALL. Banko et al.
(2007, p. 2674) extracted over one million high-quality tuples of binary relations, which
are “potentially useful for information extraction,” from approx. nine million Web pages.

In contrast to the OPEN INFORMATION EXTRACTION paradigm that aims at identifying
as many distinct relations as possible in large text corpora, Sekine (2006) introduced the
notion of on-demand information extraction to discover relations in documents returned by
an information retrieval system in response to a user’s query. Analogous to TEXTRUNNER,
the proposed system strongly relies on natural language processing by performing part-of-
speech tagging, dependency analysis, rule-based named entity extraction, and paraphrase
discovery. Instead of training a classifier, however, an unsupervised machine learning
technique is employed to identify groups of patterns that correspond to n-ary, unlabeled
relations of named entities occurring in the same semantic context.

34

2.2 Discovering Concepts in Textual Data

Assessment Due to the research conducted in the series of Message Understanding Con-
ferences, extracting relational tuples from unstructured text is a partly solved research
issue. Machine learning and fully automated techniques significantly reduced the nec-
essary efforts of knowledge engineers to establish and maintain extensive repositories of
information extraction rules. For the purpose of semantic XML tagging of domain-specific
text documents, the originally posed research question on how to extract domain-specific
named entities from text units is thus considered solved by related work. Consequently,
we do not address named entity extraction in the remainder of this work in detail, but
rather utilize the techniques conceived by this research community.

Extracting tuples from text focuses either on populating a small number of relations
of major importance or finding all occurring relations independent of their importance.
Instead of filling a few pre-defined templates or merely enumerating relational tuples,
our framework is designed to find frequently occurring, important semantic concepts and
associated named entities in text units. Discovered concepts may be interpreted as rela-
tion names, and extracted named entities might correspond to attribute values of these
relations. However, we do not aim at establishing a semantic relation between frequently
occurring named entity types in text units, which are marked up with a common semantic
concept. Hence, semantic XML annotation and extraction of relational tuples constitute
complimentary research questions. After converting texts into semantically tagged XML
documents, information extraction techniques can, for example, be utilized to further
structure the content of text units featuring important semantic concepts.

2.2.3 Learning Taxonomies, Thesauri, and Ontologies

The tasks of conceptually indexing and retrieving text documents are largely facilitated
by an existing, typically domain-specific controlled vocabulary (Baeza-Yates and Ribeiro-
Neto, 1999, pp. 170-171). A controlled vocabulary is a pre-defined list of accepted index
terms or concepts (Moens, 2000, pp. 51-53). It usually incorporates some form of seman-
tic structure, such as definitions of hierarchical and associative relations between terms.
Controlled vocabularies normalize indexing concepts and therefore allow for the identi-
fication of indexing concepts with a well-defined semantic meaning. After employing a
word sense disambiguation algorithm (cf. Manning and Schiitze, 1999, pp. 229-261), dis-
ambiguated terms can be automatically mapped onto appropriate concepts by exploiting
the semantic structure of a controlled vocabulary. For example, the piece of text ‘rate of
interest’, whose third token is disambiguated as ‘money charged for borrowing money’, is
mapped onto the semantic indexing concept ‘interest rate’.

Mapping terms occurring in text documents onto unambiguous semantic concepts is
slightly related to semantic XML tagging. Our framework for semantic XML markup,
however, assigns meaningful concept descriptors to entire text units instead of focusing
on the meaning of single terms. Resembling topic discovery reviewed in Subsection 2.2.1,
each text unit may be content-descriptively characterized by the set of descriptors that
comprises all extracted semantic concepts. Clearly, an existing and semantically enriched

35

2 Literature Review

controlled vocabulary is useful for extracting topics as well. For that reason, we give an
overview on techniques for (semi-) automatically inducing an initial, semantically enriched
controlled vocabulary from a collection of text documents. In particular, approaches to
learning taxonomies, thesauri, and ontologies from free form text are introduced in the
remainder of this subsection. We again focus on techniques designed to process unstruc-
tured textual data and thus deliberately exclude approaches that exploit characteristics
of structured or semi-structured data (e.g., Suchanek et al., 2007).

Taxonomy Learning Taxonomies are classification systems that organize concepts repre-
sented by words or phrases (Saeed, 2003, p. 68). Typically, taxonomies have a hierarchical
structure and are synonymously referred to as topic hierarchies, concept trees, or concept
hierarchies. In particular, more general concepts (e.g., ‘stockholders’ equity’) are included
at upper hierarchy levels of taxonomies whereas specific concepts (e.g., ‘preferred stock’)
are placed at lower taxonomic levels (Chung et al., 2002, p. 608). Thereby, the hyponymy,
or inclusion, relation between concepts is made explicit (Saeed, 2003, p. 68). A hyponym
includes the meaning of a more general concept and thus ‘is a kind of’” the more general
concept. For example, ‘preferred stock’ and ‘common stock’ are hyponyms of ‘stockhold-
ers’ equity’. In contrast, a more general concept, such as ‘stockholders’ equity’, is referred
to as the hypernym of more specific concepts.

Hearst (1992, 1998a) described a light-weight method for acquiring hyponyms from
text by searching for occurrences of hyponymy-specific lexico-syntactic patterns. For
example, the pattern ‘NP; such that NP, or NP3’ matches three semantically related
noun phrases NP;, ¢ € {1,2,3}. According to the semantics of the English language,
occurrences of this lexico-syntactic pattern (e.g., ‘stockholders’ equity such as common
stock or preferred stock’) imply that NPy and NP3 are hyponyms of NP;. Given a few
initial lexico-syntactic patterns, new patterns are automatically and iteratively discovered
in a text corpus. After clustering nouns using a hierarchical agglomerative algorithm,
Caraballo (1999) employed the Hearst approach to find appropriate hypernyms for labeling
each cluster in the hierarchy of related nouns. Another simple, but effective, statistical
approach to building a concept hierarchy was pursued by as Sanderson and Lawrie (2000).
Based on term co-occurrence frequencies, the method assumes that term t; is a hypernym
of term ty if the documents containing ty are a subset of those comprising t;.

Subsequent to clustering text documents, Glover et al. (2002) analyzed term frequency
statistics in the entire collection and in clusters to infer hierarchical term relationships.
Mao et al. (2003a) also employed hierarchical agglomerative clustering to establish a
collection-specific taxonomy. The authors proposed disambiguating the sense of salient
words in each cluster and looking up related synonyms, hypernyms, and hyponyms in a
lexical reference system. Each cluster of text documents is assigned a meaningful label
derived from dominant, semantically enriched concepts in documents that are assigned
to itself and its children clusters. Snow et al. (2006) proposed an algorithm for induc-
ing taxonomies that incorporates evidence from multiple classifiers over heterogeneous
taxonomic relationships and considers lexical ambiguity in one probabilistic framework.

36

2.2 Discovering Concepts in Textual Data

Thesaurus Learning Having Greek and Latin origins, the term thesaurus has been used
to denote a ‘treasury’ of words and phrases for centuries (Foskett, 1997, pp. 111-115).
Most thesauri comprise domain-specific, as opposed to general, entries in the form of
single words, composite words, or phrases. Typically, thesauri (i) provide an alphabetical
list of entries, (ii) contain internal references from entries to related terms, and (iii) group
entries into conceptual categories. Although thesauri are a useful means of enhancing
one’s style, they nowadays primarily serve as indexing languages for information retrieval
to provide a standardized vocabulary and ensure consistent indexing (cf. ISO 2788, 1986).

Usually, thesaurus entries are associated with concepts as basic semantic units for con-
veying ideas (Baeza-Yates and Ribeiro-Neto, 1999, p. 171). Since a semantic concept
can often be expressed by various synonymous words, only one thesaurus entry (i.e., the
preferred term) represents a given semantic concept for indexing purposes (ISO 2788,
1986). All non-preferred terms reference their respective preferred thesaurus entry. Fur-
thermore, the concretely referred to sense of homonyms is disambiguated by a qualifying
word or phrase, such as ‘bank (river)’. Moreover, thesauri make explicit different kinds of
hierarchical (e.g., hyponymy) and associative relationships between entries.

Grefenstette (1994) introduced the SEXTANT approach to extracting corpus-specific
semantics that is based on domain-independent syntax parsing techniques. Given a corpus
of unstructured text, SEXTANT creates a corpus-specific list of similar words for each
term and thereby groups terms into conceptual categories. Assuming that similar terms
are used in a similar way throughout the corpus, the similarity between terms depends
on their local context words and can thus be computed by applying standard similarity
measures. Grefenstette demonstrated that term similarities extracted by this method
correspond to human similarity judgments. The resulting context-based term similarities
are exploited to automatically enrich an existing thesaurus or to establish an initial,
preliminary thesaurus. In the latter case, SEXTANT only extracts semantically related
terms instead of inferring complex hierarchical or associative term relationships.

Chen et al. (1997), Houston et al. (2000), and Chen et al. (2003) advocated the statis-
tical concept space approach to automatically constructing domain-specific thesauri. A
concept space is a network of terms and weighted term associations that make explicit
semantic concepts and their relationships occurring in the underlying information space
(i.e., documents in an archive). Subsequent to domain-specific text pre-processing and
automatic indexing to identify relevant terms, an asymmetric similarity measure is used
to compute pairwise similarities of index terms in the co-occurrence analysis step. Based
on the resulting network-like thesaurus, an associative retrieval component employs a
standard neural network algorithm to determine terms that are semantically related to
a user-supplied query. The concept space approach is also adopted by LEXIMANCER to
map texts onto a set of thesaurus-like concepts (Smith, 2000).

Ontology Learning In the context of formal knowledge representation in artificial intel-
ligence systems, Gruber (1993, p. 199) defined an ontology as an “explicit specification of a
conceptualization.” According to Gruber, the term conceptualization denotes a simplified

37

2 Literature Review

and abstract view of the focal real-word domain, or a part thereof. A conceptualization
reflects the relevant concepts (e.g., entities and attributes), their definitions, and their
inter-relationships (cf. Uschold and Gruninger, 1996). We adopt the definition proposed
by Fensel (2004, p. 3) that additionally incorporates the aspect of knowledge sharing and
the focus on formal, machine-processable domain models: “An ontology is a formal, ex-
plicit specification of a shared conceptualization.” Formally specified ontologies associate
concepts and their relations with (i) representational names, (ii) human-readable defini-
tions describing the meaning of concepts, as well as (iii) formal axioms constraining their
interpretation and enabling automated reasoning (Gruber, 1993, p. 199). In particular,
the required formal specification and the possibility to define arbitrary logical relation-
ships between concepts distinguish ontologies from typical, informally defined taxonomies
and thesauri (cf. McGuinness, 2003, pp. 173-185).

Maedche and Staab (2000) as well as Maedche (2002) introduced the ontology learn-
ing framework TEXT-TO-ONTO, whose implementation is embedded into the ontology
engineering workbench ONTOEDIT. The multi-disciplinary framework supports the semi-
automated extraction of ontologies from unstructured texts and their subsequent main-
tenance. More specifically, Maedche (2002) presented several ontology learning algorithms
that have been adapted from existing work in, for example, hierarchical clustering, as-
sociation rule discovery, and pattern matching. The framework comprises algorithms to
extract lexical entries referring to concepts and their relations, to organize concepts in
a taxonomy, to identify non-taxonomic relations between concepts, as well as to prune
and refine initially inferred ontologies. Emphasis is placed on the aspect of importing and
pre-processing natural language text using the SMES system (cf. Neumann et al., 1997)
because linguistic knowledge improves the quality of ontology learning. Cimiano (2006)
continued Maedche’s work on ontology learning and population by presenting various al-
gorithms within the ONTOLOGY LEARNING LAYER CAKE framework. Cimiano focused
on inducing concept hierarchies, learning attributes of binary relations between concepts,
as well as extracting instances of concepts to populate an ontology from texts.

Missikoff et al. (2002a,b) pursued an iterative approach to learning, validating, and
managing ontologies, which includes the ONTOLEARN module for automatic concept dis-
covery from texts. Analogously to Maedche (2002), the authors strongly relied on lin-
guistic pre-processing before employing statistical and machine learning algorithms. The
system extracts relevant domain-specific terminology, disambiguates term senses, assigns
unambiguous concept names to terms, as well as identifies taxonomic and similarity rela-
tions among concepts. After deploying ONTOLEARN in a project, Missikoff et al. (2002a,
pp. 56-57) reported a remarkable increase in ontology creation productivity.

Buitelaar et al. (2004) described the ONTOLT plug-in for the ontology editor PROTEGE
(cf. Gennari et al., 2003), which connects linguistic analysis and ontology learning. ON-
TOLT applies manually or semi-automatically created rules to extract concepts and their
attributes from linguistically annotated text corpora. Before finally constructing or ex-
tending an ontology, statistical pre-processing is applied to filter relevant, domain-specific
concepts from selected linguistic entities (e.g., nouns and their modifiers).

38

2.3 Semantic Annotation of Text Documents

Assessment Various research communities proposed, implemented, and successfully evalu-
ated techniques to assist knowledge engineers in the laborious task of establishing domain-
specific controlled vocabularies. In general, however, human beings still play a decisive role
in assessing, pruning, and extending an algorithmically established controlled vocabulary.
Due to the complexity of natural language, the development of fully automated techniques
is an open research challenge (cf. Zhou, 2007, pp. 247-249).

Our framework for semantic XML tagging does not aim at identifying semantic concepts
at the term level. Its objective is rather to annotate structural text units with content-
descriptive tags. Typical semantic tags consist of several atomic concepts, or basic units
of thought, whose specific combination conveys the meaning of marked-up text. For
example, the XML tag <AcquisitionAnnouncement> comprises the atomic concepts ‘ac-
quisition’ and ‘announcement’, both of which are supposed to occur in marked-up text
units. Nevertheless, our framework does incorporate a domain-specific controlled vocabu-
lary to ensure a high quality of semantic text annotation, as discussed in Subsection 4.2.4.
Consequently, research into learning taxonomies, thesauri, and ontologies constitutes an-
other complimentary research area to the research questions pursued in this work. With-
out doubt, these techniques can potentially reduce the human efforts of establishing and
maintaining a controlled vocabulary prior to semantic XML tagging.

2.3 Semantic Annotation of Text Documents

After reviewing implicitly related work on concept identification in the preceding section,
we now survey explicitly relevant research into semantic text annotation. Colloquially,
the term annotation refers to a note by which explanation or comment is added to a
text document (Bechhofer and Goble, 2003, pp. 196-197). The authors differentiated be-
tween three major annotation types: textual annotation, link annotation, and semantic
annotation. Textual annotations are created by adding personal notes and comments to
documents whereas link annotations denote embedded references to thematically related
resources. In principle, these two annotation types primarily address human readers and
authors. Semantic annotations convey explicit metadata about the meaning of annotated
content. Besides explicitly providing semantic clues for human consumption, semantic
annotations are mostly inserted into documents to facilitate automated document pro-
cessing by software agents. To that end, the meaning of semantic annotations must be
explicitly defined in a formal ontology (cf. Fensel, 2004, pp. 3-10).

In accordance with our research questions raised in Section 1.4, we restrict the review
to research into explicit semantic annotation of unstructured textual data. Consequently,
we refrain from discussing work on textual annotation (e.g., ANNOTEA, Kahan et al.,
2002) and research into link annotation (e.g., COHSE, Bechhofer and Goble, 2003). By
intentionally excluding work on textual annotation, we in particular refrain from surveying
so-called Web 2.0 tagging systems (e.g., cf. Marlow et al., 2006; Ames and Naaman, 2007).
Tagging systems allow users to intuitively attach personal keywords to Internet resources

39

2 Literature Review

(e.g., blog entries, links, photos or videos) for subsequent personal and community use
without relying on any form of controlled vocabulary at all.

Due to the interest in Semantic Web applications (cf. Berners-Lee et al., 2001), re-
searchers proposed various techniques to facilitate the semantic annotation of semi-struc-
tured Web pages. In contrast, our work focuses on semantic markup of unstructured
texts. Hence, frameworks and tools are deliberately excluded from the discussion if their
application is restricted to semi-structured HTML or XML files. Analogously, specific
techniques for other semi-structured documents (e.g., BibTex entries) and highly struc-
tured, often ungrammatical text files (e.g., seminar announcements and classifieds) are
not reviewed either. Finally, linguistic and natural language processing research into word
sense disambiguation and semantic annotation at the term level is not considered relevant
either as our framework is designed to annotate structural text units.

In the remainder of this section, we outline characteristic research projects aimed at
semantically tagging entire text documents or individual text passages. Thereby, we
discuss techniques for both informal and formal semantic annotation. Our framework
for semantic text annotation generates explicit and informal semantic XML markup. To
bootstrap the Semantic Web, however, a large body of related research has been directed
at ontology-based, formal, and thus machine-understandable semantic markup of text
documents. In this section, related research is primarily categorized with respect to the
degree of apparently required human involvement. We distinguish between manual, semi-
automated, and automated approaches to semantic text annotation.

2.3.1 Manual Semantic Text Annotation

Undoubtedly, the semantic enrichment of documents by hand is a laborious task. Never-
theless, some applications rely on manually crafted annotations because they require high
quality, intellectually challenging, and/or fine-grained semantic markup. Following, we
describe representative research projects that resort to manual annotation for these rea-
sons. Thereafter, a characteristic framework and several tools are reviewed that support
authors and domain experts in the process of semantically annotating texts. Finally, work
on manual semantic annotation is assessed with respect to our research.

Use Cases for Manual Semantic Markup Launched in 1987, the Text Encoding Ini-
tiative (TEI) is an internationally accepted guideline for encoding literary and linguistic
texts for scholarly research (Ide and Sperberg-McQueen, 1995, pp. 5-11). Nowadays, this
guideline serves as the de facto standard for encoding and exchanging, for example, dic-
tionaries, literary prose, and recorded spoken language. This guideline consists of several
extensively documented SGML document type definitions for various types of scholarly
text (Sperberg-McQueen and Burnard, 1995, pp. 22-37). SGML tags represent conven-
tional document metadata, structural metadata (e.g., indicating paragraphs), or content-
descriptive metadata (e.g., indicating stage directions in drama). Content-descriptive TEI
tags are explicit and informal semantic annotations. The TEI Consortium also released

40

2.3 Semantic Annotation of Text Documents

an XML-based guideline (cf. Sperberg-McQueen and Burnard, 2002).

Due to the potential benefits induced by the TEI guideline, scholars have an incentive
to encode texts accordingly. To generate high quality markup, human domain experts
are frequently employed to manually assign appropriate content-descriptive tags to text
passages. Unlike these semantic tags, structural markup can be reliably created in an au-
tomated manner. For example, the ORLANDO project (Butler et al., 2000) purposefully
extended TEI document type definitions to encode a literary history of British women
writing. Team members compiled an archive of structurally and thematically annotated
SGML documents and thereby enabled sophisticated document post-processing. Instead
of marking up existing documents, a team of highly qualified researchers and graduate
students authored textual content and corresponding semantic annotations in parallel.
After agreeing upon a document type definition comprising 238 unique tags, team mem-
bers inserted more than 577,000 annotations into approx. 2,500 texts, like biographies or
historical reports. Despite taking social and technical precautions, the observed tagging
consistency among the large team of authors did not meet the high expectations and thus
proved to be a challenging research issue. Interestingly, this result confirmed previous
empirical studies on inter-tagger consistency (Butler et al., 2000, pp. 124-125).

Bayerl et al. (2003b) emphasized the importance of manual annotations in the compil-
ation of corpora and linguistic research material. In this context, Bayerl et al. (2003a)
presented a corpus-based method to analyze the semantics of structural markup in XML-
encoded scientific articles. Due to the absence of appropriately tagged archives, 158
scientific articles were annotated at the structural level and two linguistically motivated
semantic levels. Analogously to the above mentioned ORLANDO project, domain special-
ists manually added semantic markup to already structurally tagged articles. During the
annotation phase, a systematic methodology was adopted to ensure the consistent usage
of semantic tags by all team members (Bayerl et al., 2003b).

Finally, Weiss-Lijn et al. (2002, 2003) described the GRIDV1IS system for interactive
exploration of semantically enriched document collections. Resembling passage retrieval
systems (cf. Salton et al., 1993; Callan, 1994), GRID VIS facilitates the goal-driven search
for relevant information at the paragraph level by leveraging semantic metadata. Docu-
ment collections are visualized by a matrix, whose rows represent a hierarchy of semantic
concepts occurring at the paragraph level. The occurrence of semantic concepts in cer-
tain paragraphs, which are represented by matrix columns, can easily be visualized by
coloring the respective matrix cells. Weiss-Lijn et al. (2003, p. 117) underlined that
high-quality semantic metadata is essential to implement and evaluate the novel visual-
ization technique: Unlike low-quality metadata that can be produced with relatively little
human involvement, the required high-quality semantic metadata was “painstakingly hand
crafted.” In particular, Weiss-Lijn et al. established and iteratively refined a taxonomy
of domain-specific concepts. Subsequently, all paragraphs of two corporate text archives
were manually annotated by making explicit the concepts occurring therein.

Facilitating Manual Semantic Markup Handschuh and Staab (2003b,c) introduced the

41

2 Literature Review

annotation framework CREAM, whose acronym stands for CREATING METADATA FOR
THE SEMANTIC WEB. This conceptual framework facilitates the semantically accurate
and ontology-based annotation of resources published on the Web. Handschuh and Staab
aimed at overcoming the ‘annotation bottleneck,” namely, the hardly existing willingness
to provide the required explicit and formal metadata. This phenomenon poses an enor-
mous challenge in the process of transforming the envisioned Semantic Web (cf. Berners-
Lee et al., 2001) into omnipresent reality. CREAM specifies components for (i) manual
annotation of existing resources, (ii) authoring of semantically enriched resources, and (iii)
semi-automated markup of resources (cf. Subsection 2.3.2). The reference implementation
ONTOMAT-ANNOTIZER is a client application of the freely available KAON tool suite
(cf. Maedche and Staab, 2003, p. 29). An extended version is part of the commercial ON-
TOPRISE TOOL SUITE (cf. Fensel, 2004, pp. 83-84). The free reference implementation
only supports the markup of semi-structured resources, such as HI'ML files. Neverthe-
less, the semantic annotation of unstructured texts is conceptually encompassed by this

framework as well (Handschuh and Staab, 2003c, p. 29).

The conceptual framework CREAM is designed to satisfy requirements for successful
semantic annotation, which reflect the authors’ experience gained in several knowledge ac-
quisition projects (Handschuh and Staab, 2003c, pp. 26-28). Ensuring consistent markup,
using proper references, and avoiding redundant markup are the top three out of nine pre-
requisites for successfully creating formal and semantically accurate metadata. Markup
consistency requires annotators to adhere to a given ontology because only well-defined
formal annotations allow for effective knowledge sharing and automated reasoning. In
addition, real-world entities, like human beings, must be referenced by unique identifiers
within the entire knowledge base. Otherwise, captured knowledge about particular en-
tities cannot be completely retrieved from the knowledge base. To make the reuse of
captured knowledge possible, collaborative annotation systems should prevent users from
unknowingly providing redundant markup of already tagged resources.

Tallis et al. (2001, 2002) argued that benefits of semantic markup mostly accrue to
agent-assisted consumers of documents published on the Semantic Web. In contrast, con-
tent producers typically lack the motivation to put in extra annotation effort. To simplify
the costly production of hand-crafted semantic metadata, Tallis et al. designed and imple-
mented the BRIEFING ASSOCIATE plug-in that augments Microsoft’s widely used Pow-
ERPOINT application. This plug-in enables authors of POWERPOINT presentations to
simultaneously compose the actual content and the corresponding formal, ontology-based
metadata. Unlike the reference implementation of CREAM, BRIEFING ASSOCIATE takes
advantage of a popular commercial off-the-shelf application and thereby reduces the re-
quired initial training of users. Tallis (2003) and Eriksson (2007) introduced plug-ins that
support semantic annotation in WORD and PDF documents, respectively. BRIEFING As-
SOCIATE and SEMANTICWORD are representatives of highly specialized annotation tools.
By contrast, GATE is a flexible, component-based architecture for natural language pro-
cessing (cf. Cunningham, 2002). Specifically, the GATE MANUAL ANNOTATION TOOL
supports theory-neutral, format-independent text annotation and thus enables authors to

42

2.3 Semantic Annotation of Text Documents

insert arbitrary semantic markup into texts as well.

To persuade content producers into semantically tagging documents, Tallis et al. (2002)
suggested offering them value-adding services that exploit semantic metadata and thus
demonstrate their usefulness. This strategy resembles the instant gratification approach
pursued in the MANGROVE project to entice non-technical people to semantically anno-
tate their resources (McDowell et al., 2003). Besides offering a robust and easy-to-use
annotation tool, providing instant gratification to content authors is a key concept in
MANGROVE. Concretely, newly marked-up content is immediately published and con-
sumed by semantics-based Web services that show the utility of annotated resources.
Analogously, Motta et al. (2000) emphasized the necessity of identifying concrete use
scenarios and added value prior to beginning ontology-driven document enrichment.

Assessment Despite the costs involved, semantic text annotation by hand is the pre-
ferred technique in a variety of domains. Substituting costly manual with (semi-) auto-
mated markup techniques, which provide semantic markup of comparably high quality,
is therefore an open research challenge. Our framework for semantic tagging of large,
domain-specific text archives comprises a semi-automated knowledge discovery phase fol-
lowed by a fully automated application phase. If the DIASDEM framework is capable of
maintaining equivalently high markup quality, it can easily complement applications that
currently rely on hand-crafted metadata, such as GRIDVIS (cf. Weiss-Lijn et al., 2003)
introduced above. Nevertheless, our framework should only be applied in a well-defined
and value-adding (i.e., benefits outweigh costs) scenario because experienced domain and
KDT specialists are involved in the initial knowledge discovery phase.

Unlike the framework and tools reviewed above, our explicit and informal approach to
semantic tagging does not incorporate a priori established, formal ontologies as input. This
characteristic feature is discussed after reviewing research into semi-automated, mostly
formal text annotation in the next subsection.

2.3.2 Semi-Automated Semantic Text Annotation

Unlike truly automated techniques, semi-automated text annotation tools purposefully
incorporate knowledge supplied by human experts into the tagging process. Instead of
having to manually mark up entire text archives, domain and KDT specialists typically
annotate training documents as input for machine learning algorithms, supervise a knowl-
edge discovery process, or assess the markup quality to adjust parameters of annotation
algorithms. In this subsection, we consider approaches to semantic text annotation as
being semi-automated if they require considerable human intervention in any phase of
the proposed process. We classify representative approaches to semi-automatic seman-
tic text annotation into (i) methods chiefly based on information extraction algorithms
and (ii) methods mainly based on natural language processing techniques. Furthermore,
Reeve and Han (2005), Uren et al. (2006), and Han et al. (2007, pp. 443-449) provided
comprehensive surveys of existing semantic annotation platforms.

43

2 Literature Review

Focus on Information Extraction AMILCARE is an adaptive information extraction
system based on supervised rule induction (Ciravegna et al., 2003; Ciravegna and Wilks,
2003). This system is embedded within the MELITA annotation tool for human-centered
semantic markup of textual resources. In particular, Ciravegna et al. introduced a
methodology of seamless interaction between human annotators, the annotation inter-
face, and the information extraction algorithm that aims at providing non-intrusive and
timely support for human annotators. Consequently, annotators do not directly inter-
act with an IE system, but they merely accept, correct, or decline automatically created
annotation suggestions within their usual markup environment. The IE-enhanced annota-
tion process is split into two main phases. While the user annotates named entities in the
initial training phase, AMILCARE induces information extraction rules in the background.
These rules are utilized to make markup suggestions in the second phase, which is de-
noted ‘active annotation with revision.” In this phase, users are encouraged to actively
correct erroneous markup suggestions. User feedback augments the training documents
and triggers a re-execution of the rule induction algorithm.

Given appropriate training documents, AMILCARE is capable of extracting arbitrary
named entities, such as names of persons, locations, dates, or phone numbers (Ciravegna
and Wilks, 2003, pp. 114-117). Hence, this information extraction system offers a flexible
support for identifying and annotating these named entities in text documents. Ciravegna
et al. (2003, p. 159) extracted named entities from rather structured seminar announce-
ments and concluded that AMILCARE and MELITA substantially contributed towards re-
ducing the “burden of manual annotation.” Furthermore, S-CREAM (Handschuh et al.,
2002) and MNM (Vargas-Vera et al., 2002) successfully integrated the AMILCARE infor-
mation extraction system to semi-automatically markup named entities. Users of both
S-CREAM and MNM approve identified named entities before the tools generate explicit
and formal semantic markup adhering to a pre-defined ontology.

The SEMANTIC CONTENT ORGANIZATION AND RETRIEVAL ENGINE (SCORE) is a
comprehensive and integrated tool set designed to facilitate the development of analysis-
oriented Semantic Web applications (Sheth et al., 2002). SCORE provides facilities to
define ontological components, as well as to extract, normalize, store, integrate, and query
ontology-based metadata. In particular, SCORE exploits semantic metadata to associate
semantically related, but not directly connected, content. Establishing semantic links
between heterogenous resources requires a tight integration of document management,
knowledge management, and semantic technology. In this context, the SEMANTIC EN-
HANCEMENT ENGINE (SEM) pre-processes heterogeneous content, employs supervised
learning techniques to determine the topicality of documents, and extracts contextually
relevant semantic metadata (Hammond et al., 2002). Semantic text annotations are ex-
plicitly and informally stored in XML files conforming to specific XML document type
definitions. Other formal ontology languages like the W3C-proposed Web Ontology Lan-
guage OWL (cf. Fensel, 2004, pp. 44-46) can be supported in principle.

Prior to extracting metadata, automated text classification (cf. Sebastiani, 1999) is
employed in SEM to assign retrieved documents into pre-defined thematic categories

44

2.3 Semantic Annotation of Text Documents

(Hammond et al., 2002). For each topic category, contextually relevant semantic metadata
are defined in a topic-specific ontology. SEM executes information extraction algorithms
to semantically enhance documents by making explicit topic-related entities and their
relationships. Since text classification requires human-generated rules or manually tagged
training documents, we consider SCORE to be semi-automated annotation system. In
addition, topic-specific IE techniques typically necessitate hand-coded regular expressions.
However, Sheth et al. (2002, pp. 85-86) reported that only three full-time knowledge
engineers implement and maintain “a few hundred Web-based extractors.”

Abolhassani et al. (2003) distinguished between macro- and micro-level text markup.
The former corresponds to structural markup, as defined in Section 1.2, whereas the latter
denotes semantic markup of single words or word groups. Within the VASARI project,
Abolhassani et al. focused on micro-level markup and applied information extraction
techniques to semantically annotate plain texts published in encyclopedias of art. Af-
ter processing, for example, introductory articles about artists, informal semantic XML
tags make explicit names of artists, places of their birth, and detailed descriptions of
their achievements. The VASARI project adopts the knowledge engineering approach to
information extraction and is thus considered to support semi-automatic text annota-
tion. After having interactively and iteratively defined domain-specific extraction rules,
however, thematically related texts can be automatically annotated.

Focus on Natural Language Processing Although Web pages are generally considered
to be semi-structured, they often contain passages of unstructured text without embedded,
semi-structuring HTML markup. Buitelaar and Declerck (2003) thus stressed the need
for language technologies to establish the Semantic Web (cf. Berners-Lee et al., 2001) on
a large scale. By determining the inherent semantic structure, natural language process-
ing transforms text into a representation suitable for subsequent information extraction
and content-descriptive markup, respectively. According to Buitelaar and Declerck, nat-
ural language processing techniques (e.g., morphological analysis, part-of-speech tagging,
chunking for phrase identification, and word sense tagging) are important pre-processing
steps to generate explicit and formal text markup for Semantic Web applications. In
fact, all IE-focused techniques for semantic annotation surveyed above do perform lin-
guistic pre-processing to some limited extent because the actual information extraction
algorithms cannot be applied to plain natural language text.

Volk et al. (2002) as well as Buitelaar and Declerck (2003) integrated linguistic and
semantic annotation to associate textual content with domain-specific, ontology-based
knowledge. The MUCHMORE framework facilitates conceptual, cross-language informa-
tion retrieval in a corpus of medical abstracts. For each abstract, multiple layers of in-
depth linguistic and semantic annotations are stored in a single XML file conforming to a
project-specific XML document type definition (cf. Vintar et al., 2002). Thereby, explicit
and informal semantic markup is generated in MUCHMORE. More specifically, semantic
tagging corresponds to mapping terms onto concepts that are defined in domain-specific,
informal or formal ontologies (e.g., thesauri, semantic lexicons, or semantic networks). In

45

2 Literature Review

addition, ontology-defined relations between concepts are made explicit. The approach
pursued by Buitelaar and Declerck is considered to be semi-automated because linguistic
algorithms must be manually parameterized for each new domain prior to automatically
annotating domain-specific texts. After tagging German abstracts, Volk et al. concluded
that linguistic processing, in particular lemmatization and compound analysis, is a pre-
requisite for creating high-quality semantic markup.

The XDOC DOCUMENT SUITE is a tool collection for linguistic text processing (Ros-
ner and Kunze, 2003; Kunze, 2006). XDOC comprises several modules for text pre-
processing, detection of linguistic units (e.g., sentences and titles), part-of-speech tagging,
syntactic parsing, and semantic analysis. Semantic tagging in XDOC corresponds to
mapping terms onto concepts defined in a domain-specific semantic lexicon. In particu-
lar, case frame analysis is conducted to resolve ambiguous term senses and to map disam-
biguated words onto concepts. Furthermore, relations between concepts are identified by
exploiting syntactic characteristics of domain-specific sublanguage. Since linguistic text
annotations are stored in tool-specific XML documents, this application generates explicit
and informal semantic markup. Résner et al. (2004) outlined a use case for XDOC in the
context of transforming and enriching textual content for Semantic Web applications. The
XDOC DOCUMENT SUITE is a semi-automated text annotation tool because it requires
domain-specific parameterization.

Analogous to the XDOC DOCUMENT SUITE, Li et al. (2001) exploited syntactic char-
acteristics of domain-specific sublanguage to semantically annotate sentences. The au-
thors focused on sublanguage texts with limited vocabulary, patterns in vocabulary us-
age, and rare semantic ambiguities. Essentially, Li et al. proposed to syntactically parse
sentences and subsequently employ supervised learning algorithms to infer a mapping
between the syntactical sentence structure and RDF (cf. Fensel, 2004, pp. 19-21) state-
ments, which constitute explicit and formal markup. However, this approach requires a
considerable human effort to create a training corpus by manually labeling syntactically
parsed sentences with RDF statements. The authors demonstrated the feasibility of this
approach by annotating 500 sentences from approx. 300 clothes descriptions.

Besides analyzing company descriptions and technical documentation, Rosner and Kun-
ze (2003) employed the XDOC DOCUMENT SUITE to semantically annotate German
autopsy protocols. In this medical sublanguage, a very telegrammatic style is dominant
(cf. Rosner and Kunze, 2003, p. 123). Focusing on a related medical domain, Moore
and Berman (2001) presented a technique to convert textual pathology reports into se-
mantically marked-up XML documents. Moore and Berman employed natural language
processing techniques and a medical thesaurus to map single terms and noun groups onto
medical concepts. Subsequently, medical concepts serve as XML tags that semantically
annotate the corresponding terms in an explicit and informal way.

Assessment Analogous to the research reviewed above, our framework pursues a semi-
automated approach to semantic text annotation. The initial, interactive knowledge dis-
covery phase incorporates human domain knowledge to ensure a consistently high markup

46

2.3 Semantic Annotation of Text Documents

quality. In the second, batch-oriented phase, domain-specific text documents are automat-
ically transformed into semantically tagged XML documents. Like the surveyed research
on semi-automated text annotation, our framework is also focused on domain-specific text
archives to exploit characteristics of the respective sublanguage.

As defined in Section 1.2, our framework derives archive-specific XML tags that con-
cisely summarize the content of structural text units. Unlike research into purely IE-based
text annotation, the DIASDEM framework is hence not restricted to marking up certain
named entities only. The identified named entities rather augment content-descriptive
XML tags. Thereby, extracted named entities are placed in a semantic context. However,
we do not aim at inferring the specific roles of named entities within annotated text units.
As the primarily linguistic research into semantic markup, our approach maps structural
text units comprising multiple terms onto high-level semantic concepts. In contrast to
annotation tools focusing on natural language processing, the DIASDEM framework
additionally incorporates conventional information extraction techniques. Thereby, our
approach combines the information extraction thread of research into text annotation and
the linguistic aspect of mapping textual content onto semantic concepts. We advocate
basic linguistic text pre-processing (e.g., tokenization and lemmatization), but we refrain
from employing sophisticated NLP techniques, such as morphological analysis or syntactic
parsing, to reduce complexity.

A large proportion of research into semi-automated semantic tagging is targeted at
bootstrapping the Sematic Web. In this context, the creation of explicit and formal se-
mantic markup is imperative since machine-understandable markup is a prerequisite for
automated reasoning. The Semantic Web approach to text annotation hence necessitates
pre-defined formal ontologies. In contrast, our framework transforms text documents
into explicitly and informally annotated XML documents and does not require a formally
defined ontology. Furthermore, the DIASDEM framework incorporates an explorative
knowledge discovery approach to reduce human intervention. Unlike the representative
[E-based and NLP-focused work introduced above, our framework neither requires se-
mantically tagged training documents nor relies on existing sophisticated semantic lexica.
Instead, explorative knowledge discovery techniques (i.e., clustering algorithms) are uti-
lized to discover domain-specific, content-descriptive XML tags, which are subsequently
aggregated into a concept-based XML document type definition.

2.3.3 Automated Semantic Text Annotation

This subsection introduces representative research into automated semantic text markup.
In contrast to both manual and semi-automated approaches, we subsequently focus on
techniques that do not incorporate human knowledge into the tagging process. Although
mostly relying on an existing and mainly semi-automatically set up knowledge base,
domain-independent techniques are considered to support automatic markup. Unlike their
semi-automated counterparts, these techniques can be straightforwardly applied to text
archives comprising general content without the need for re-parameterization. Existing

47

2 Literature Review

automatic markup tools mainly extract and semantically annotate named entities.

Focus on Information Extraction AERODAML utilizes information extraction tech-
niques to alleviate the human effort required to semantically mark up textual resources
published on the Web (Kogut and Holmes, 2001; Kogut and Heflin, 2003). Given a
URI, the corresponding resource is downloaded and automatically marked up by explicit
and formal annotations in the DAML (cf. Fensel, 2004, p. 44) knowledge representa-
tion language. AERODAML annotates proper nouns, common nouns, and other named
entities that instantiate concepts and relationships defined in a DAML ontology. In ad-
dition to mapping typical named entities (e.g., persons) onto concepts, common nouns
(e.g., ‘gun’) are identified as instantiations of the respective concepts (e.g., ‘weapon’).
Furthermore, pre-defined relationships, such as ‘person works for company’, can be in-
stantiated as well. AERODAML is built on top of a proprietary text mining system,
utilizes domain-independent rules for proper noun extraction, and incorporates the lexi-
cal database WORDNET (cf. Fellbaum, 1998) into its domain-independent knowledge base.
Inspired by computer-assisted translation, Kogut and Holmes proposed to automatically
mark up textual resources by default. Only if necessary, domain experts may add new or
correct generated annotations via a markup tool of their choice. AERODAML can also
be customized to create domain-specific markup in a semi-automated way.

The semantic text annotation platform KIM is based on GATE components (cf. Cun-
ningham, 2002) for text pre-processing and information extraction (Popov et al., 2003;
Kiryakov et al., 2003; Popov et al., 2004). KIM automatically maps named entities onto
concepts that are defined in the domain-independent KIM ONTOLOGY. The KIM ON-
TOLOGY is encoded in the formal ontology language RDFS (cf. Fensel, 2004, pp. 37-39)
and comprises a taxonomy of approx. 250 concepts (e.g., ‘entity’, ‘object’, and ‘prod-
uct’) along with their attributes and relationships among them. In addition, information
extraction in KIM takes advantage of a massive knowledge base, which includes lexical
resources and approx. 80,000 important named entities as instantiations of the KIM ON-
TOLOGY. Due to the existing KIM ONTOLOGY and the extensive knowledge base, KIM
is capable of automatically inserting explicit and formal semantic annotations into gen-
eral text documents. The system achieved 86% average precision at 82% average recall in
annotating six general-purpose named entities (i.e., date, person, organization, location,
percent, and money) in 100 news articles. After extending the knowledge base appro-
priately, KIM is also capable of marking up domain-specific text documents. However,
domain-specific text annotation is considered to be a semi-automated technique because
it requires a considerable amount of human involvement.

Dill et al. (2003) introduced SEEKER, a component-based framework for large-scale
text analytics. SEMTAG is built on top of this framework and allows for an automated
semantic annotation of pre-defined named entities in large text corpora. Dill et al. aimed
at bootstrapping the Semantic Web (cf. Berners-Lee et al., 2001) by automatically anno-
tating textual content with a set of domain-independent, widely usable named entities.
SEMTAG strongly relies on the semi-automatically compiled TAP KNOWLEDGE BASE

48

2.3 Semantic Annotation of Text Documents

(cf. Guha and McCool, 2003) that comprises lexical and taxonomic information about
approx. 72,000 important entities, such as ‘musicians’, ‘movies’, and ‘athletes’. Neverthe-
less, SEMTAG is considered to be an automated annotation tool because this application
marked up 434 million named entities in 264 million Web-based resources and achieved a
tagging accuracy of around 82%. This Web-scale experiment required negligible human
involvement (i.e., approx. 700 yes/no decisions) because Dill et al. automatically resolved
ambiguities by executing a taxonomy-based disambiguation algorithm. After identifying
named entities listed in the TAP KNOWLEDGE BASE, ambiguous strings (e.g., ‘Michael
Jordan’ may be a basketball player or a statistician) are disambiguated on the basis of
context terms. All generated annotations are represented as RDFS (cf. Fensel, 2004,
pp. 37-39) statements. These annotations are stored separately from marked-up content
and thus facilitate flexible semantic Web services.

Gruhl et al. (2004) gave an overview on WEBFOUNTAIN, an architecture for very large-
scale text analytics that is based on SEEKER and SEMTAG. The platform allows access
to different sources, supports the scalable deployment of document-level text enrichment
and corpus-level analysis, as well as the creation of Web services that serve end-user
applications. Alba et al. (2006) discussed challenges and lessons learned when building
this Web-scale system that collects, analyzes, stores, and serves billions of documents.

Assessment Ideally, human involvement in generating semantically enriched content
should be completely eliminated to facilitate large-scale semantic services. As illustrated
by the research reviewed above, however, fully automated text annotation techniques
are currently capable of identifying and marking up domain-independent named entities
only. These techniques take advantage of the vast literature on extracting named enti-
ties and relational tuples from unstructured text (cf. Subsection 2.2.2). In contrast, our
semi-automated framework for semantic XML tagging pursues different objectives in two
important aspects. Firstly, we employ explorative knowledge discovery techniques to find
content-descriptive XML tags that briefly summarize the textual content of text units.
Thereby, textual content is mapped onto high-level semantic concepts, such as ‘Acquisi-
tionAnnouncement’, and extracted named entities are placed in the context of conceptual
tags. Secondly, our framework is designed to transform domain-specific, as opposed to gen-
eral, text archives into XML documents conforming to an archive-specific XML document
type definition. In contrast, all reviewed automatic markup tools assume the existence
of domain-independent knowledge in a lexical database or generic ontology, which was
manually or semi-automatically codified or acquired by a third party. The existence of
appropriate knowledge bases can hardly be assumed for a variety of specific domains.
Hence, the development of fully automated markup techniques for domain-specific texts
remains an open research challenge (cf. Reeve and Han, 2005, p. 1434).

49

2 Literature Review

2.4 Schema Discovery in Marked-Up Text Documents

The DIASDEM framework transforms domain-specific texts into semantically annotated
XML documents and semi-structured data, respectively. As introduced in Section 1.1,
‘self-describing’ semi-structured data do not adhere to a rigid and explicitly defined
schema, but rather exhibit some structure and may implicitly conform to a loose schema
(Buneman, 1997; Wang and Liu, 2000, p. 353). In our framework, however, each collec-
tion of semantically tagged XML documents conforms to a concept-based XML document
type definition. This automatically derived XML DTD serves as a context-free grammar
for all XML documents and thus constitutes a loose schema that specifies the internal
structure of annotated XML documents (cf. Abiteboul et al., 2000, pp. 38-45).

Albeit imposing only loose structural constraints, XML document type definitions offer
substantial advantages in storing, processing, and querying the respective collections of
XML documents (Garofalakis et al., 2003, p. 24). In principle, these benefits accrue from
the fact that a document type definition specifies a regular expression pattern for each
DTD element, which must be matched by all sequences of DTD elements occurring therein.
Unfortunately, XML documents do not have to conform to a document type definition
(cf. World Wide Web Consortium, 2000). Consequently, the question of deriving an XML
document type definition from a given collection of XML documents constitutes a research
issue of practical importance. The discovery of a typically loose schema for marked-up
textual data is an issue relevant to our research questions although we limit ourselves
to establishing an XML document type definition that enumerates frequently occurring
thematic concepts and associated named entity types.

Since XML documents are instances of semi-structured data in many respects (cf. Garo-
falakis et al., 2003, p. 24), we firstly survey representative approaches to schema discovery
in conventional semi-structured data. Subsequently, techniques for inferring a document
type definition from a collection of SGML or XML documents are reviewed. Due to the
missing relevance to our research, we do not discuss approaches that require an existing
DTD as input. This criterion is, for example, met by research into inferring a reduced
DTD from a complex DTD and a sample of marked-up documents (e.g., Bia et al., 2001)
and by techniques for aggregating several document-specific source DTDs into one com-
mon DTD (e.g., Sengupta and Purao, 2000). Finally, this subsection is concluded by
assessing the reviewed work with respect to our pursued research questions.

Schema Discovery in Semi-Structured Data Collections of semi-structured documents
are usually modeled as graphs (cf. Buneman, 1997; Abiteboul et al., 2000, pp. 11-13).
For example, the OBJECT EXCHANGE MODEL (OEM; Papakonstantinou et al., 1995)
can be conveniently represented by a labeled, directed graph. Vertices correspond to
uniquely identifiable OEM objects in OEM graphs, and edges convey semantic informa-
tion about the relationship between connected objects via descriptive textual labels (e.g.,
has_company). Labeled vertices without outgoing edges represent typed atomic values
(e.g., the string "Giant Foo Corp."). The remaining vertices represent complex objects

50

2.4 Schema Discovery in Marked-Up Text Documents

comprising a set of subordinate OEM objects.

Goldman and Widom (1997) introduced an algorithm to derive concise and accu-
rate structural summaries (i.e., DATAGUIDES) for collections of OEM encoded semi-
structured documents. Serving as collection-specific schemata, DATAGUIDES enable users
to grasp an understanding of the collection structure prior to formulating queries. Anal-
ogously to data dictionaries in relational databases, DATAGUIDES facilitate optimized
query processing by providing structural metadata. Unlike data dictionaries, DATAGUIDES
are dynamically derived from the data themselves and do not enforce any constraints on
the document collection. DATAGUIDES are OEM graphs that reflect structural features
(i.e., labeled edges that connect placeholder vertices) occurring at least in one document.
In the worst case, constructing a DATAGUIDE for arbitrary OEM graphs is exponential
in time and space with respect to the graph size. When applied to OEM trees, however,
the algorithm has a linear complexity.

Experimental results indicate that DATAGUIDES are significantly smaller than typical
OEM source collections (Goldman and Widom, 1997, p. 438). Nevertheless, the size of
accurate schemata, like DATAGUIDES, may be quite large unless the described documents
share a very similar structure. Complex schemata tend to exacerbate interactive structure
exploration as well as automated query optimization. To balance the need for compact
schemata against schema accuracy requirements, Goldman and Widom (1999) as well as
Nestorov et al. (1998) presented distinct approaches to extracting an approximate, yet
sufficiently detailed, schema from semi-structured documents.

Domain-specific semi-structured documents are often similarly, though not identically,
structured. To reveal frequently occurring structural elements, Wang and Liu (2000) pro-
posed an algorithm that discovers typical graph structures in a collection of OEM encoded
documents. The authors extended the OBJECT EXCHANGE MODEL (Papakonstantinou
et al., 1995) such that vertices of the directed OEM graph may represent complex objects
that comprise either an ordered list or an unordered set of subordinate OEM objects.
Furthermore, Wang and Liu generalized the problem of discovering association rules sup-
ported by a minimum number of transactions (cf. Agrawal et al., 1993; Agrawal and
Srikant, 1994). Consequently, the minimum frequency of interesting structural elements
must be specified by the user. Subsequently, the algorithm searches partial graph struc-
tures (i.e., so-called tree expressions) whose frequency of occurrence in all source OEM
graphs exceeds the user-supplied threshold.

Schema Discovery in SGML/XML Documents Since an archive of SGML documents
may lack a document type definition, Ahonen (1995, 1996) studied the problem of auto-
matically establishing a DTD for a given collection of SGML documents. Ahonen con-
ceptualized and validated a generic method for generating a context-free grammar from
a set of marked-up documents. Initially, the structure of input documents is completely
captured by creating a finite-state automaton for each structural element. Thereafter,
machine learning techniques are employed to generalize these automata and subsequently
convert them into regular expressions. Finally, a grammar is constructed from the result-

51

2 Literature Review

ing regular expressions that makes explicit the internal document structure. Specifically,
this method derives archive-specific SGML document type definitions, which (unlike triv-
ial ones) are neither too generalized nor too restrictive.

Shafer (1996) introduced a method for automated inference of SGML DTDs, which
resembles the approach pursued by Ahonen (1996). Shafer employed the proprietary
GRAMMAR BUILDER ENGINE to infer a grammar from tagged documents. Firstly, struc-
tural rules representing SGML tags and their nestings are extracted from input documents.
Subsequently, sophisticated heuristics are applied to combine, generalize, and reduce these
structural rules before the resulting grammar is finally output as an SGML DTD. Both
Shafer and Ahonen approached the problem of generating a DTD from a set of SGML
documents as an application of deterministic grammar inference. In contrast, Young-Lai
and Tompa (2000) advocated a technique based on stochastic grammar inference, which
takes frequency information from the training documents directly into consideration. Ac-
cording to Young-Lai and Tompa, stochastic grammar inference scales better to large
collections and creates models with richer semantics.

DTD-MINER automatically extracts a document type definition from XML documents
in a three-step process (Moh et al., 2000b,a). Firstly, the hierarchical internal structure of
each XML document is transformed into an ordered n-ary tree whereby tags are modeled
as labeled vertices. Since XML documents may be structurally dissimilar even in the
same archive, Moh et al. (2000a) suggested utilizing a graph-based clustering algorithm
to identify structurally homogeneous sub-collections. Secondly, all document trees are
merged into one ordered, directed, acyclic graph that represents the overall structural
information about XML tags, their hierarchical relationships, and attributes. Finally,
heuristic rules are applied to modify this spanning graph before generating an XML DTD.
In particular, heuristics distinguish optional from mandatory DTD elements, identify
repeatable DTD elements, and find appropriate groups of repeatable DTD elements.

Garofalakis et al. (2000, 2003) described the XTRACT system, which comprises al-
gorithms to infer an XML document type definition from XML documents. The authors
specifically focused on exploiting the full expressive power of regular expressions sup-
ported by the DTD syntax to automatically establish both concise and precise document
type definitions. To that end, generalization and factorization algorithms create several
candidate DTDs by employing heuristics and logic optimization techniques. However, the
most important step involves choosing the ‘best’ document type definition from all candi-
date DTDs by applying the minimum description length principle rooted in information
theory. Thereby, the tradeoff between ‘conciseness’ and ‘preciseness’ of DTDs is taken
into consideration by balancing these two desired characteristics of XML document type
definitions. Min et al. (2003) introduced a simplified and heuristic approach to DTD ex-
traction and reported that this technique derived highly concise and accurate real-world
document type definitions up to 20 times faster than XTRACT.

Ling et al. (2005) introduced the semantically rich OBJECT RELATIONSHIP ATTRIBUTE
DATA MODEL FOR SEMI-STRUCTURED DATA (ORA-SS) to overcome limitations of ex-
isting data models, such as OEM or DATAGUIDES. According to Ling et al. (2005,

52

2.5 Summary

pp. 57-58), ORA-SS combines concepts central to semi-structured data models (e.g.,
references, ordering of object classes and attributes, and document instances) with tradi-
tional data modeling concepts, like binary and n-ary (n > 2) relationships, participation
constraints on object classes participating in relationships, as well as inheritance hierar-
chies between object classes. This data model consists of a schema diagram, an instance
diagram, a functional dependency diagram, and an inheritance hierarchy diagram. Be-
sides defining ORA-SS, Ling et al. (2005, pp. 56-75) proposed an algorithm designed to
extract an ORA-SS schema from a semi-structured data instance, such as an XML docu-
ment. The authors suggested employing a semi-automated, rule-based algorithm that is
highly focused on data-centric, as opposed to text-centric, XML documents. Subsequent
to generating an initial schema in the first extraction step, user input is required to verify
schema properties derived from the data in the second, schema-refining step.

Assessment The rapid emergence of SGML and XML for encoding various kinds of
data sparked a large body of research into schema discovery in marked-up documents.
Since neither SGML nor XML documents have to be accompanied by a document type
definition, automatically inferring a DTD for a given collection of marked-up documents
is an efficient means of enjoying the considerable DTD-induced benefits.

As illustrated by the representative work reviewed above, schema discovery in marked-
up documents is mostly a solved research issue. A variety of experimentally validated
methods is available to researchers and practitioners. These techniques often rely on
graph-based representations and sophisticated heuristics to infer an intuitively usable,
both concise and accurate DTD from marked-up documents. These methods are com-
plementary to the research questions addressed in this work since we primarily aim at
marking up unstructured text units with domain-specific, conceptual XML tags discov-
ered beforehand. Nevertheless, semantic XML tags are aggregated into a concept-based
XML document type definition. Establishing an enumerative XML document type def-
inition is sufficient because our framework does not encompass the creation of nested
markup. Once the insertion of nested XML tags is fully supported in the future, however,
an existing method for automatic inference of non-trivial XML document type definitions
can easily be incorporated into our framework.

2.5 Summary

In this chapter, we have reviewed work related to semantic XML tagging, as defined in the
introductory Section 1.2. We have given an overview of fundamental text processing re-
search areas, as well as specific research into topic discovery, semantic text annotation, and
schema discovery in marked-up documents. However, the assessments of individually sur-
veyed research areas remain to be integrated. To that end, we delineate our approach from
directly related work on semantic text annotation and highlight its multi-disciplinarity.

53

2 Literature Review

Schema Discovery
in Marked-Up
- Text Documents

DIAsDEM
Framework for
Semantic XML
Tagging of Domain-
Specific Text Archives

Learning Taxono-
mies, Thesauri, --------- -
and Ontologies

T - Extracting Re-
lational Tuples

. Topic Dis- Named from Text
Information covery in Text Entity Re-
Retrieval Documents cognition

Knowledge Discovery
in Textual Databases

Figure 2.2: Fundamental and Complementary Research Areas of the DIASDEM Frame-
work for Semantic XML Tagging of Domain-Specific Text Archives

Semantic XML Tagging Unlike other approaches to semantic text annotation, we in-
vestigate the content-descriptive markup of fine-grained structural text units, such as
sentences or paragraphs. In principle, our semi-automated framework is capable of en-
hancing applications that, for quality reasons, currently rely on manual text annotation.
Current techniques for automated semantic markup are restricted to the annotation of
generic named entities and often strongly rely on existing knowledge bases. After going
through an initial knowledge discovery phase, our framework instead allows for an auto-
mated conversion of domain-specific texts into conceptually marked-up XML documents.

For each new domain, an interactive knowledge discovery process must be accomplished
once. This process is designed to discover domain-specific, concept-based XML tags for
a given text collection and to derive a matching concept-based XML document type def-
inition. Unlike most research into semi-automated markup, we neither solely concentrate
on named entity extraction nor restrict ourselves to mapping textual content onto pre-
defined semantic concepts. Instead, our framework combines research into topic discovery
(i.e., identifying semantic XML tags) and named entity recognition (i.e., augmenting XML
tags). Subsection 2.2.2 has revealed that the originally posed research question related
to the extraction of domain-specific named entities from text units can be considered
solved by the information extraction research community for the scope of this work. Fur-
thermore, our approach does not require a formal ontology as input because we aim for
informally annotating text documents. Instead, we suggest incorporating domain knowl-
edge in the form of a controlled vocabulary, which can usually be established with less
effort. Subsequent to the knowledge discovery phase, documents from the same domain
are automatically marked up without any human intervention.

54

2.5 Summary

Multi-Disciplinary Approach Due to the complexity of inferring semantics from text
documents, we adopt an inherently multi-disciplinary approach to semantic XML tag-
ging. As the pyramid in Figure 2.2 illustrates, knowledge discovery in textual databases
is the fundamental discipline. To attain our objectives, we selectively utilize methods
from information retrieval (e.g., text pre-processing), topic discovery (e.g., employing
unsupervised learning techniques), and named entity recognition. Furthermore, dashed
arrows indicate three major complementary research areas. For example, complementary
research into automatic learning of controlled vocabularies may be utilized to further re-
duce human efforts in the knowledge discovery phase. In addition, complementary work
on schema discovery in marked-up documents and extraction of relational tuples from
text might be exploited to post-process semantically tagged XML documents.

Intermediate Conclusion The semi-automatic DIASDEM framework occupies an im-
portant and clearly-defined niche in the continuum of requirements for semantic XML
tagging of textual data. Specifically, our framework enables explicit, informal, and high-
quality semantic markup of large, domain-specific text archives whose documents share a
common sublanguage. Distinctive characteristics of our framework are the application of
explorative knowledge discovery techniques to identify thematic concepts at the text unit
level as well as the combination of content-descriptive text annotation and named entity
extraction. Our framework is introduced in detail in the next chapter.

95

3 DIAsDEM Framework

Chapter 3 outlines the DIASDEM framework for semantic XML tagging of domain-
specific text archives. This conceptual framework provides a high-level solution to the
research questions raised in the introduction. In the next section, we clarify the most
important terminology for the scope of this work. Section 3.2 presents the principal
objectives of our framework and gives a concise overview thereof. The subsequent Sec-
tions 3.3 and 3.4 outline the semi-automated knowledge discovery phase and the fully
automated knowledge application phase, respectively.

3.1 Terminology

According to Definition 1, the central term semantic XML markup denotes XML tags
whose names explicitly convey informal metadata about the meaning of marked-up text
units. Semantic XML tags concisely describe concepts that domain experts typically
associate with marked-up text units. Optionally, attributes of semantic tags make explicit
named entities occurring in annotated text units. The syntax of semantic XML markup
is defined in a concept-based XML document type definition whereas the meaning of
semantic XML markup is informally specified in the accompanying DTD documentation.

In this subsection, we define fundamental terms, such as text document, text unit, and
semantically marked-up text document. Each fundamental, framework-specific term is
accompanied by a corresponding abstract data type specified in Appendix B. An abstract
data type (ADT) is a class “of objects whose logical behavior is defined by a set of values
and a set of operations” (Dale and Walker, 1996, p. 3). Although ADTSs are precisely
defined, they are independent of any particular implementation in a programming lan-
guage (Guttag and Horning, 1978, p. 27). The set of values encapsulated by an abstract
data type can only be accessed and modified via the set of valid operations, which is
referred to as the interface. This principle of hiding implementation details by providing
a well-defined interface is known as encapsulation (cf. Loeckx et al., 1996, p. 11). We
define and subsequently utilize! abstract data types related to semantic XML tagging of
text archives because they allow for a high-level description of required data structures,
as well as characteristic properties and operations.

INotation: Let x: T denote a variable x of type T that can be either a primitive data type described in
Appendix B.1 (i.e., Boolean, Integer, Real, Char, and arrays) or an abstract data type (e.g., String)
specified in the remainder of Appendix B. If T is an abstract data type and o(-) is an operation thereof,
x.0(+) denotes the execution of operation o(-) on the instantiation x of abstract data type T.

3 DIAsDEM Framework

Computer-accessible text documents may conform to a variety of internal format speci-
fications. The DIASDEM framework, however, abstracts from this diversity in formats
and only considers archives that comprise plain text files. Since our framework is delib-
erately restricted to alphabet-based languages whose characters are interpreted from left
to right, text documents? are modeled as sequences® of characters:

Definition 2 (Text Document) A text document t: String is a sequence of characters.

In particular, we abstract from specific character encoding schemes, but assume the
existence of characters, such as the blank space (i.e., " "), letters (e.g., "A", "a", or "&"),
digits (e.g., "0"), punctuation marks (e.g., "."), and special characters (e.g., "$", line
feed, or tab stop). So-called whitespace characters, like the blank space or the tab stop,
potentially separate natural language words (cf. Manning and Schiitze, 1999, p. 125).
The abstract data type TextDocument (see Appendix B.4 on page 220) encapsulates one
text document. Given the exemplary text t,: TextDocument and t.create("New York:
The contract was signed on Dec. 30, 2006."), t;.length() = 51, t;.char(9) = ":",
ty.char(t;.length()) = ".", and t;.chars(38,50) = "Dec. 30, 2006".

The ADT TextArchive (see Appendix B.5 on page 221) encapsulates one text archive.
Due to the possibility of duplicate documents, text archives are modeled as follows:

Definition 3 (Text Archive) A text archive & = (§1,%s,...,%5) is a sequence of not
necessarily distinct text documents such that t;: TextDocument, where i = 1,2,... 4]

Instead of disambiguating the sense of single terms (cf. Manning and Schiitze, 1999,
pp. 229-263), our framework enables the semantic markup of structural text units:

Definition 4 (Text Unit) Given the text document t: TextDocument, a text unit i :
String s a sequence of contiguous characters in t such that U = t.chars(i,j), where
i = 1,2,...,tlength() and j = i,i + 1,...,t.length(). A text unit represents a struc-
tural text component that consists of more than one natural language word.

Structural text units can be fine-grained (e.g., sentences), coarse-grained (e.g., para-
graphs), or even comprise entire text documents. The ADT TextUnit (see Appendix B.6
on page 221) encapsulates one text unit. Let 1y: TextUnit denote the text unit that is
instantiated by ii.create(f;, 11,51) to encapsulate the sentence t;.chars(11, 51) = "The
contract was signed on Dec. 30, 2006." Thus, 1;.length() = 41, ;. .startIndex() =
11, and 1u;.endIndex() = 51. As part of the document pre-processing prior to semantic
tagging, text documents are decomposed into text units of the required granularity. The
resulting decomposition is henceforth referred to as a text unit layer:

2Hereafter, text documents are synonymously referred to as textual data and text, respectively.

3Notation: Let the set X denote an arbitrary domain. A non-empty sequence x := (1, Za,...,2;) is a
tuple comprising ¢ € N ordered elements x1,xg,...,x; such that x; € X, where j = 1,2,...,4. The
number of elements [x| € N in sequence x (i.e., its length) is not necessarily constant. The jth element
in sequence x is denoted by x[j], where j = 1,2,...,|x|. An empty sequence is denoted by & (|e| = 0).

58

3.1 Terminology

Definition 5 (Text Unit Layer) Given the text document t: TextDocument, a text unit
layer is a decomposition of text document t into structural text units. Text unit layer
I = (g, Uy, ..., W), where ;: TextUnit and i =1,2,...,[t], is a sequence of ordered and
not necessarily contiguous, but non-overlapping, text units in text document t.

One text unit layer is encapsulated by the abstract data type TextUnitLayer (see Ap-
pendix B.7 on page 222). In principle, text documents may be decomposed into multiple
text unit layers that have different structural characteristics. For instance, the text unit
layer 1: TextUnitLayer decomposes text document t; into dateline and news item, namely,
"New York" and "The contract was signed on Dec. 30, 2006." Alternatively, text
unit layer 7o: TextUnitLayer splits the same document into grammatical sentences and
thus only comprises the text unit corresponding to the second string. To further concep-
tual clarity, our framework is deliberately restricted to process exactly one text unit layer
per text document. Future extensions, however, are straightforward.

We now proceed by formalizing our notion of semantic XML markup. As informally
introduced in Section 1.2, semantic markup associates text units with content-descriptive
concepts and named entities occurring therein. To achieve conceptual clarity, however,
we abstract from syntax-related issues of outputting marked-up textual data as XML
documents in this subsection. Before defining semantically marked-up text units, the
notions of concepts and named entities introduced in Section 1.2 are clarified as follows:

Definition 6 (Concept) Given the domain-specific text archive a: TextArchive, a concept
18 a mental reference or thought that domain experts typically associate with a group of
semantically similar text units occurring in text documents of a. A concept is represented
by a symbol o € O from the domain-specific set of concepts O := {01,092, ...,0/0/}

The abstract data types Concept (see Appendix B.8 on page 222) and SetOfConcepts
(see Appendix B.9 on page 223) encapsulate one concept and one set of concepts, respec-
tively. As emphasized in Section 1.2, there is a clear semiotic distinction between symbols
on the one side and mental references, thoughts, or concepts on the other. Unless otherwise
stated, however, we henceforth directly refer to symbol o € O as the thematic concept o
to simplify our notation. Alphanumeric labels of concepts (e.g., Conclusion0fContract
associated with the concept conclusionOfContract € O;) ultimately serve as names of
semantic XML tags. Named entities are modeled as 2-tuples*:

Definition 7 (Named Entity) Let P := {p1,p2,...,pp|} denote a set of domain-specific
named entity types that represent abstract classes and generic numerical expressions.
Given the text unit u: TextUnit, a named entity e := (p: P,é: String) identified in

4Notation: A k-tuple x := (2, 9,...,2) comprises k& € N ordered elements 1, s, ..., xs. If the sets
X;, where i = 1,2,...,k, denote k arbitrary domains, then x := (x1: Xy, 29: Xa,..., 2z Xi) defines
a k-tuple such that z; € X;. The number of elements |x| = k in k-tuple x (i.e., its arity) is constant.
Elements z; of k-tuple x may take the null value (i.e., x; = null) if z; is unknown, inappropriate, or
non-existent. The ith element in k-tuple x is denoted by x[i].

59

3 DIAsDEM Framework

text unit 0 is a 2-tuple comprising its named entity type p and the canonical form é of the
instantiated named entity type p in text unit 0. A set of distinct named entities is denoted

by E:= {61,62, R 76‘E|}.

Given the set of named entity types P; := {company, person, date}, the named entities
e; := (date, "2006-12-30") and ey := (date, "Day=30; Month=Dec; Year=2006") can,
for example, be extracted from the text unit "New York: The contract was signed on
Dec. 30, 2006." Although named entities e; and ey refer to the same instantiation of
named entity type date in this text unit, they have distinct canonical forms. Alphanumeric
labels of named entity types, like Date, and canonical named entity forms, like "2006-12-
30", ultimately serve as names and values, respectively, of attributes that represent the
respective named entities within semantic XML tags. The extent to which named enti-
ties are normalized is application-dependent. The abstract data types NamedEntityType
(see Appendix B.10 on page 223) and SetOfNamedEntityTypes (see Appendix B.11 on
page 224) encapsulate one named entity type and one set of named entity types, re-
spectively. Additionally, one named entity and one set of named entities is encapsu-
lated by the abstract data types NamedEntity (see Appendix B.12 on page 224) and
SetOfNamedEntities (see Appendix B.13 on page 225), respectively.

Definition 8 (Semantically Marked-Up Text Unit) Given the parent text document t:
TextDocument, a semantically marked-up text unit G := (: TextUnit, o: Concept, E: Set-
OfNamedEntities) is a 3-tuple comprising the original text unit 1, the domain-specific
concept o that domain experts typically associate with text units similar to text unit 1,
and the set of named entities E extracted from text unit 1.

A semantically marked-up text unit is encapsulated by the abstract data type Smu-
TextUnit (see Appendix B.14 on page 225). For example, the semantically marked-up
text unit 1;: SmuTextUnit associates the original text unit 1y, which represents the sen-
tence "The contract was signed on Dec. 30, 2006.", with the concept conclusion-
OfContract and a set of named entities that merely includes the identified named entity
e; = (date, "2006-12-30"). To proceed, we extend our notions of text unit layers, text
documents, and text archives by defining their marked-up counterparts:

Definition 9 (Semantically Marked-Up Text Unit Layer) Given the text unit layer ¥:
TextUnitLayer, a semantically marked-up text unit layer t := (1, 0g,...,) is a se-
quence of semantically marked-up text units such that 0;: SmuTextUnit and G;.textUnit()
= T.textUnit (i), where i =1,2,... T.size().

Definition 10 (Semantically Marked-Up Text Document) Given the text document t:
TextDocument, a semantically marked-up text document t = (t: TextDocument, ¥ Smu-
TextUnitLayer) is a 2-tuple comprising the original text document t and the semantically
marked-up text unit layer © that represents a decomposition of text document t into se-
mantically marked-up text units.

60

3.1 Terminology

Definition 11 (Semantically Marked-Up Text Archive) Given the text archive a: Text-

Archive, a semantically marked-up text archive a := <‘E1,‘E2, e 7£|é‘> s a sequence of not
necessarily distinct, semantically marked-up text documents such that t;: SmuTextDocu-
ment and t;.textDocument() = a.textDocument (), where i = 1,2, ..., a.size().

Consequently, the abstract data types SmuTextUnitLayer (see Appendix B.15 on page
226), SmuTextDocument (see Appendix B.16 on page 226), and SmuTextArchive (see
Appendix B.17 on page 227) encapsulate the respective framework-specific objects.

Besides semantically tagging text archives, we aim at inferring a concept-based XML
document type definition. Again disregarding syntax issues of creating XML DTDs, we
introduce the notion of conceptual document structures. A conceptual document structure
encapsulates the necessary information for generating a concept-based XML DTD. This
DTD reflects the thematic structure of marked-up documents on the text unit level by
enumerating existing concepts and associated named entity types.

Definition 12 (Conceptual Document Structure) Given the semantically marked-up
text archive : SmuTextArchive, the set A = {i | @: SmuTextUnit := a.smuTextUnit(j, ;)
Viji=1,2,... asize() Vk; =1,2,...,asmuTextUnitLayerSize(j)} contains all distinct,
semantically marked-up text units in a. The archive-specific set O := {o | 0: Concept :=
t.concept() V @ SmuTextUnit € A} contains all concepts occurring in a. A conceptual
document structure § := (Lo,p) is a 3-tuple comprising an alphanumeric label 1: String
that concisely describes the common theme of text documents covered by 8, the sequence
of concepts 0 := (01,09, ...,0[0,|), where o; € Oy fori = 1,2,...,|04|, the sequence of
possibly empty sets p := (P1,Py,...,Po,)), where P; := {p | p: NamedEntityType :=
it.distinctNamedEntity Types()[]] V @: SmuTextUnit € A s.t. ti.concept() = o; V[=
1,2,..., t.distinctNamedEntity Types().size} represents the types of named entities ex-
tracted from text units associated with concept o;. The semantically marked-up text archive
a conforms to conceptual document structure S.

The ADT ConceptualDocumentStructure (see Appendix B.18 on page 227) encap-
sulates one conceptual document structure. Although we abstract from syntactical is-
sues related to generating XML document type definitions from conceptual document
structures as well as transforming semantically marked-up text documents into XML
documents, this ADT nevertheless defines the corresponding operations xmlDtd() and
xmlDocuments(a: SmuTextArchive) for the purposes of making explicit the objectives of
our framework and providing an overview thereof in the next section.

The DIASDEM framework adopts a knowledge discovery approach to semantic text
annotation. In Section 2.1.1, we have emphasized that knowledge discovery is an in-
herently process-oriented activity. We have described the generic process of discovering
knowledge in textual databases. Since our framework involves a specific KDT process
comprising multiple algorithms, we finally introduce our notion of KDT process flows:

61

3 DIAsDEM Framework

Definition 13 (KDT Process Flow) Let g(-) denote an arbitrary, parameterizable KDT
algorithm for selecting, pre-processing, or transforming textual data, or for discover-
ing, interpreting, or evaluating patterns. A specific, parameterizable KDT process flow
f:=(gi(-),22(:),...,gu(-)) s a sequence of KDT algorithms that must be parameterized
and executed in the order of their occurrence in f to accomplish the objectives of the re-
spective KDT process. Let g(-) denote an arbitrary, parameterized KDT algorithm. A
parameterized KDT process flow is denoted by f := (81(), 82(-), . .. 87 ()

In our knowledge discovery context, the KDT process flow f is modeled as a sequence
of algorithms because algorithm g;,1(-), where i = 1,2, ... |f| — 1, typically requires the
output generated by its predecessor g;(-) as input. Considering possibilities for a potential
parallel execution of several KDT algorithms is beyond the scope of this work.

The abstract data types KdtAlgorithm (see Appendix B.19 on page 228) and KdtPro-
cessFlow (see Appendix B.20 on page 229) encapsulate one KDT algorithm and one KDT
process flow, respectively. These abstract data types represent both parameterizable and
fully parameterized algorithms and process flows, respectively. In the former case, KDT
algorithms do not yet contain parameter values.

3.2 Objectives and Overview

Providing a compelling solution to the research questions stated in Section 1.4 constitutes
the main objective of the DIASDEM framework. The conceptual framework, along with
its prototype implementation, addresses the following primary research question:

Can techniques for knowledge discovery in textual databases be employed to
convert large archives comprising domain-specific text documents of homoge-
neous content into semantically marked-up XML documents?

In Section 1.2, we have informally introduced the framework-specific notion of semanti-
cally marked-up XML documents. As part of the literature review, the research discipline
of knowledge discovery in textual databases has been concisely introduced in Subsec-
tion 2.1.1. The key terms text document, text archive, and text archive, along with their
semantically marked-up counterparts, have been defined in the preceding section. We
intentionally restrict the applicability of our framework to text archives that exhibit the
following characteristics:

e All input text documents are composed of characters from an arbitrary, finite al-
phabet whose characters are interpreted from left to right.

e Furthermore, the text archive contains domain-specific, as opposed to general, docu-
ments of relatively homogeneous content. The text documents to be marked up do
not comprise narrative or literary text, but rather consist of expository text that
explicitly explains, teaches, or states something (cf. Hearst, 1997, p. 35).

62

3.2 Objectives and Overview

e Moreover, a natural clustering tendency (cf. Jain and Dubes, 1988, pp. 201-202) is
observed at the selected text unit level of the archive. Trying to identify frequently
occurring concepts at the text unit level only makes sense if text units exhibit a
predisposition to cluster into natural groups of semantically similar content.

e Finally, the input text archive is both large and potentially valuable enough to
outweigh the costs of employing human domain and KDT experts, which incur
during the initial, inherently semi-automated knowledge discovery phase.

To sum up, our framework is focused on semantically annotating large, domain-specific
text archives whose documents comprise rather homogeneous content and exhibit a natural
clustering tendency at the text unit level. These prerequisites are satisfied by various kinds
of important text archives, such as public announcements of courts and administrative
authorities, quarterly and annual reports to shareholders, collections of company and
industry news, textual patient records in health care applications, as well as product and
service descriptions published on electronic marketplaces.

As an overall objective, the DIASDEM framework adopts a knowledge discovery ap-
proach (i) to convert the domain-specific text archive & TextArchive into the semantically
marked-up text archive a: SmuTextArchive, (ii) to establish the accompanying conceptual
document structure §: ConceptualDocumentStructure, (iii) to output the domain-specific
and concept-based XML document type definition §.xmlDtd(), and (iv) to create the
collection of semantically marked-up XML documents S.xmlDocuments(a).

Unlike text classification techniques (cf. Sebastiani, 1999), our framework neither re-
quires pre-defined thematic concepts nor relies on the existence of manually tagged train-
ing XML documents. Instead, we employ unsupervised learning, or clustering techniques,
to discover classification knowledge in unstructured text documents. Specifically, we ini-
tially acquire knowledge about frequently recurring thematic concepts at the text unit
level. Subsequently, this knowledge is exploited to classify text units by assigning them
to content-descriptively labeled concepts. To that end, the entire text archive is split
into the training archive ar: TextArchive and the typically larger, or even continuously
growing, application archive a,: TextArchive. The overall objective of our framework is
thus attained by pursuing the following two, more specific, and complementary goals:

1. Knowledge discovery: Given the domain-specific training text archive ar, domain
and KDT experts shall be supported in interactively parameterizing the generic,
framework-specific KDT process flow for semantic XML tagging f: KdtProcessFlow.
Thereby, training text archive ar is interactively transformed into semantically
marked-up text archive ap: SmuTextArchive, and the accompanying conceptual
document structure s: ConceptualDocumentStructure is established. To enable a
quality assessment of semantic markup by domain experts, the XML document type
definition §.xmlDtd() and the semantically marked-up XML documents §.xmlDocu-
ments(ar) shall be created.

63

3 DIAsDEM Framework

XML Document
Type Definition

Interactive and lter-
ative KDT Process

Semantically Marked-

Text Documents in Up XML Documents
Training Archive

Text Documents in Semantically Marked-
Application Archive Up XML Documents

Batch Process

Parameterized
KDT Process Flow

Phase 1: Semi-Automated Phase 2: Fully Automated
Knowledge Discovery Phase Knowledge Application Phase

Figure 3.1: Outline of the Two-Phase DIASDEM Framework

2. Knowledge application: Given the application text archive a,, which comprises the-
matically similar text documents as the training text archive ar, and the fully param-
eterized KDT process flow f: KdtProcessFlow for semantic XML tagging, application
text archive &, shall be automatically transformed into the semantically marked-
up text archive as: SmuTextArchive, which conforms to the conceptual document
structure S. In addition, the collection of XML documents S.xmlDocuments(ax)
shall be output. Domain experts shall be supported in monitoring the quality of
semantic XML markup.

Figure 3.1 illustrates the two-phase DIASDEM framework for semantic XML tagging of
large, domain-specific text archives. For each new domain, the semi-automated knowledge
discovery phase must be completed only once. This explorative phase, which is outlined in
the next section, comprises several subtasks to attain the knowledge discovery objectives
stated above. Besides transforming the training text archive into a semantically marked-
up text archive, the interactive and iterative knowledge discovery process outputs an
archive-specific XML DTD and a fully parameterized KDT process flow. This process flow
encapsulates a sequence of algorithms and their respective parameter settings, which must
be executed to semantically mark up new text archives in the knowledge application phase.
As outlined in Section 3.4, huge amounts of new texts are automatically converted into
semantically annotated XML documents to achieve the knowledge application objectives
in this productive, repeatable phase.

64

3.3 Knowledge Discovery Phase

Input: : Pre-Processing of Text Documents:
— Text Unit Creation, Tokenization, Named Entity Extraction, ...
, Mapping Text Units onto Text Unit Vectors | -
f c
S
Text Documents in : . .] ® Output:
Training Archive 3 Clustering of Text Unit Vectors: 5
e : Selection of Algorithm, Parameter Setting, =
m : Execution of Algorithm, Ranking of Clusters g’
L m= o= : = —

[
-

== ==: y g XML Document

AN 6 Type Definition

Controlled Vocabulary Persons:
(e.g., Thesaurus)
Person
: Extracted Qualitatively Qualitatively Un- .
> Named Entities Acceptable Clusters Acceptable Clusters Semantically Marked-
— : Up XML Documents
Descriptions of - + + +
Named Entity Types :
Post-Processing of Discovered Patterns: : >
Semantic Labeling of Acceptable Clusters, Deriving a Concept- e
Based XML DTD, Semantic XML Tagging of Text Documents : Parameterized
: KDT Process Flow

Figure 3.2: Knowledge Discovery Process of the DIASDEM Framework

3.3 Knowledge Discovery Phase

In this section, the knowledge discovery phase of the DIASDEM framework is informally
outlined whereas it is described in full detail in Chapter 4. Illustrated in Figure 3.2,
the interactive and iterative KDT process accomplishes the knowledge discovery goals
stated in the preceding section. Finding groups of thematically similar text units featuring
coherent topics is the major challenge. To meet this challenge, we employ an unsupervised
learning technique (i.e., clustering) in the pattern discovery step to identify semantically
homogeneous subgroups of text units.

Besides the training archive of text documents, a controlled vocabulary representing
domain-specific terminology and descriptions of relevant named entity types constitute
the main input to the knowledge discovery process. After purposefully choosing the level
of text unit granularity, basic text document pre-processing (e.g., text unit creation, to-
kenization, lemmatization, and optional word sense disambiguation) is performed in the
KDT pre-processing step. Additionally, named entities are extracted from text units.
Instead of removing meaningless stopwords to reduce the dimensionality, we establish a
drastically reduced feature space by selecting a limited set of terms (i.e., text unit de-
scriptors) from the controlled vocabulary. Text unit descriptors are chosen by the domain

65

3 DIAsDEM Framework

expert because they have to reflect important terminology of the domain. Subsequently,
all text units are mapped onto numerical text unit vectors by utilizing the vector-space
model introduced by Salton (1968, pp. 236-243; cf. Subsection 2.1.2).

In the pattern discovery step, text unit vectors, each representing one text unit, are
clustered based on similarity. The objective is to discover dense and semantically homoge-
neous clusters of text unit vectors and text units, respectively. Our KDT process is termed
iterative because a clustering algorithm is repeatedly invoked with a varying input data
set and possibly different parameter settings to identify as many groups of thematically
similar text units as possible. Our notion of iterative clustering, by repeatedly executing
a clustering algorithm, is different from the multiple passes over the input data that are
internally performed by some clustering algorithms.

In Subsection 4.3.4, we suggest algorithms that are particularly appropriate for cluster-
ing text unit vectors. Each clustering iteration outputs a set of clusters, which is automat-
ically partitioned into acceptable and unacceptable ones according to framework-specific
cluster quality criteria. A cluster of text unit vectors is qualitatively acceptable if (i) its
cardinality is sufficiently large, (ii) the corresponding text units are homogeneous, and
(iii) the text units can be content-descriptively characterized by a small number of text
unit descriptors. Text units that correspond to members of acceptable clusters approved
by the domain expert are removed from the data set for subsequent labeling. In contrast,
text units that correspond to the remaining text unit vectors assigned to unacceptable
clusters are again mapped onto numerical vectors. These text unit vectors constitute the
input data to the clustering algorithm in the next iteration. In each iteration, param-
eters of the clustering algorithm may be adjusted such that acceptable clusters become
progressively less specific in content. The clustering iteration stops if acceptable clusters
cannot be found or if the expert prefers to stop pattern discovery.

In the post-processing step, qualitatively acceptable clusters are semi-automatically as-
signed a content-descriptive label. Although cluster labels are ultimately determined by
the domain expert, cluster label suggestions are automatically formulated to assist the
expert in choosing meaningful semantic cluster labels. All default cluster labels are de-
rived from feature space dimensions (i.e., text unit descriptors) that are prevailing in the
respective cluster. The finally chosen cluster labels correspond to the names of seman-
tic XML tags, which are subsequently used to annotate the respective cluster members.
Furthermore, XML tags are enhanced by attributes that represent previously extracted
named entities. Moreover, an archive-specific, concept-based XML document definition is
automatically derived and all original text documents are transformed into semantically
marked-up XML documents that conform to this XML DTD. Finally, a fully parame-
terized KDT process flow is created that enables an automated transformation of text
documents from the same domain into semantically annotated XML documents.

To evaluate the markup quality in absence of pre-tagged test documents, a random
sample of marked-up text units is drawn and manually evaluated by domain specialists.
Analogous to supervised learning, the quality of XML tag names is in principle assessed
with respect to two error types. Firstly, a text unit may be mistakenly annotated with a

66

3.4 Knowledge Application Phase

Input: : Pre-Processing of Text Documents: DP;pc_e_ss _
—» Text Unit Creation, Tokenization, Named Entity Extraction, ... efinition:
: : -M;p-pi;\g-T;x; U-ni;s-o;to-T;x; Jnﬁ \7ec-:to-rs- | - ;l
c
+ 5| o
=
S P terized
I o arameterize: :
Classﬁ_lcatlon of = KDT Process Flow -
Text Unit Vectors: c
Assignment of Text Unit Vectors to Clusters g """""""""""""
]
Text Documents in 02
Application Archive "u:,
7]
8
(&}
Output:
: Extracted Qualitatively Qualitatively Un-
- Named Entities Acceptable Clusters Acceptable Clusters
Post-Processing of Discovered Patterns:
Semantic XML Tagging :
XML Document of Text Documents : Semantically Marked-
Type Definition : Up XML Documents

Figure 3.3: Knowledge Application Process of the DIASDEM Framework

semantic XML tag that does not properly reflect the content of the marked-up text unit.
Secondly, a text unit may not be annotated at all although the concept-based XML DTD
comprises a semantic XML tag that appropriately reflects the content of the untagged
text unit. Additionally, the quality of XML tag attributes and extracted named entities,
respectively, is assessed in accordance with the concept-based XML DTD.

The entire KDT process is intentionally designed to be interactive, or semi-automated,
to create semantic markup of high quality. Besides evaluating the tagging quality, domain
and KDT experts supervise the whole knowledge discovery process. In particular, human
experts establish a new, or refine an existing, domain-specific controlled vocabulary (cf.
Moens, 2000, pp. 51-53) in the pre-processing step. They also approve, modify, or reject
automatically generated cluster label suggestions in the post-processing step.

3.4 Knowledge Application Phase

Having successfully completed the initial knowledge discovery process for a domain-specific
text archive, the second phase of the DIASDEM framework enables an automated an-
notation of text documents from the same domain. This batch-oriented and productive

67

3 DIAsDEM Framework

process is illustrated in Figure 3.3 and informally summarized in this section. Details
regarding the second phase of our framework are presented in Subsection 4.3.4, in Sec-
tion 4.5, and in the descriptions of two real-world case studies in Chapter 6.

A fully parameterized KDT process flow can be executed without human intervention
and thus plays a central role in applying discovered classification knowledge to documents
that are thematically similar to the training documents. Informally, the KDT process
flow is a sequence of parameterized algorithms that are executed one after the other to
annotate domain-specific text documents. In the knowledge application phase, exactly
the same pre-processing steps are performed as in the knowledge discovery phase. Instead
of iteratively clustering text unit vectors, however, vectors are iteratively classified by
assigning them to clusters and thematic concepts, respectively, identified in phase one.

In the knowledge application phase, the number of classification iterations equals the
number of clustering iterations performed in phase one. Each clustering iteration of the
KDT process is associated with a set of qualitatively acceptable, hence semantically la-
beled clusters and a set of qualitatively unacceptable clusters. These iteration-specific
clusters of text unit vectors constitute the discovered classification knowledge. In the first
classification iteration, all text unit vectors are assigned to one of the clusters discovered
in the first clustering iteration. The concrete assignment procedure depends on the char-
acteristics of the clustering algorithm employed beforehand. If clusters are represented by
centroid vectors, for example, an input text unit vector is assigned to the cluster whose
centroid vector is closest to itself, according to the utilized proximity measure. At the end
of each iteration, text units that correspond to vectors assigned to qualitatively acceptable
clusters are removed from the data set since their content-descriptive labels correspond
to the respective cluster labels. By contrast, text units whose vectors are assigned to un-
acceptable clusters are again mapped onto numerical text unit vectors. They constitute
the input data for the next classification iteration.

The post-processing step is reduced to semantically marking up original text documents.
All created XML documents adhere to the concept-based XML document type definition
established in phase one. Unlike the interactive knowledge discovery phase, no human
interventions are thus necessary to transform text documents into semantically marked-up
XML documents. Continuously monitoring the quality of automatically created markup,
however, still requires domain experts.

3.5 Summary

In this chapter, we have defined fundamental terminology for the scope of this work.
Thereafter, our two-phase DIASDEM framework for semantic XML tagging of large,
domain-specific text archives has been introduced. For each new domain, a semi-automat-
ed knowledge discovery phase must be completed once. We have outlined an interac-
tive KDT process that iteratively discovers classification knowledge required for semantic
markup, derives a conceptual XML DTD, and creates a parameterized KDT process flow.

68

3.5 Summary

By executing this process flow in the second knowledge application phase, thematically
similar text documents are automatically transformed into semantically marked-up XML
documents.

69

4 DIAsDEM Knowledge Discovery
Process

As an integral component of our framework for semantic XML tagging, the DIASDEM
knowledge discovery process has been coarsely outlined in Section 3.3. In this chapter, we
introduce the interactive and iterative knowledge discovery process in full detail. To that
end, Section 4.1 extends the framework-specific terminology by defining terms relevant for
all subsequent sections whereas more specific terminology is defined throughout this chap-
ter. As illustrated in Figure 3.2 on page 65, the KDT process consists of three main steps,
which are henceforth covered by three individual sections. Firstly, Section 4.2 describes
the necessary pre-processing of text documents. Secondly, the discovery of patterns by
means of clustering text unit vectors is discussed in Section 4.3. Thirdly, Section 4.4 ex-
plains our approach to post-processing discovered patterns to accomplish the knowledge
discovery objectives of the DIASDEM framework. The parameterized KDT process flow
specified in Section 4.5 bridges the semi-automatic discovery and the automated appli-
cation of knowledge. Furthermore, the current extent and possible reductions of human
involvement in the KDT process are discussed in Section 4.6. Finally, this chapter is
summarized in Section 4.7.

To illustrate concepts and algorithms introduced in this chapter, we utilize the exem-
plary texts listed in Table 4.1. These five news items used for illustrative purposes are
contained in Volume 1 of the Reuters Corpus (cf. Rose et al., 2002). Each news item
comprises information concerning the definitive or likely agreement between a divesting
and an acquiring firm about the sale of a business unit. Divestitures, or so-called sell-
offs, are one form of corporate restructuring (cf. Gaughan, 2002, pp. 395-417). The item
identifier listed in the second column of Table 4.1 is the primary key of news items in
the corpus. Henceforth, these news items are referred to by means of their identifiers
tg1: TextDocument through tgs: TextDocument, which are listed in column three.

4.1 Terminology

Although fundamental, framework-specific terms have already been defined in Section 3.1,
additional terminology is required in the context of our knowledge discovery process. In
the preceding chapter, the number of introduced terms has been intentionally kept to
a minimum to enhance conceptual clarity. We have focused on the input side (i.e., an
archive of text documents and their components) and on the output side (i.e., a conceptual

4 DIAsDEM Knowledge Discovery Process

Table 4.1: Five Reuters News Items Used in Examples (Source: Reuters Corpus, Vol-
ume 1, English Language, 1996-08-20 to 1997-08-19; cf. Rose et al., 2002)

Reuters News Item Item Text

USA: VASCO says to sell consulting unit. VASCO Corp said it agreed to sell its con- 16106 tg;
sulting and technical organization, VASCO Performance System, to Wizdom Systems
Inc. Terms were not disclosed. —Chicago Newsdesk 312-408-8787

USA: Helmerich to sell unit to Occidental. Helmerich & Payne Inc said Tuesday 17109 tgs
it entered into a definitive agreement under which Occidental Petroleum Corp will

acquire its Baytown, Texas-based Natural Gas Odorizing Inc subsidiary. The total

acquisition value will be about $48 million, payable in Occidental common stock.

Closing is expected on August 30. — Chicago newsdesk 312 408-8787

USA: Weyerhaeuser may sell subsidiary. Timber giant Weyerhaeuser Company said 71177 tgs
Monday it may sell its mortgage loan subsidiary, the Weyerhaeuser Mortgage Com-

pany. The company said it has retained the New York investment banking firm of

Goldman, Sachs & Co. to explore its strategic options with the 1,500-employee unit.

The mortgage unit, which is headquartered in Woodland Hills, Calif., originated $2.1

billion in residential first mortgages in the eight months that ended Aug. 31. The

company did not comment on the timing of its announcement or on the sale price of

the subsidiary. In early trading on the New York Stock Exchange, the stock was up

25 cents to $46.87.

USA: Miller to sell unit to Modtech. Miller Building Systems Inc said it agreed to 78899 ftgy
sell its Miller Structures Inc unit in California to Modtech Inc, a maker of modular

classrooms. Final settlement is scheduled for October 21, Miller said. Terms were

not disclosed. —Chicago Newsdesk 312-408-8787

USA: Zurn sells unit to Constellation Capitol. Zurn Industries Inc said on Tues- 115995 ftgs
day that it will sell its Zurn Mechanical Power Transmission Group to Constellation

Capital Partners LLC, for an undisclosed amount. The companies indicated that the

sale is expected to be completed by the end of November. In a statement, Philip

Knisely, president of Constellation Capital, said: “Mechanical Power Transmission

(MPT) represents an excellent platform for growth both internally and through com-

plementary additional acquisitions.” — New York Newsdesk +1 212 859 1610

document structure along with an archive of semantically marked-up text documents and
their components) of the framework. The knowledge discovery algorithms described in this
chapter, however, require additional intermediate data structures to ultimately transform
input text documents into semantically marked-up XML documents.

Analogous to Vintar et al. (2002), we create tokenized text in the pre-processing step.
To that end, our notion of tokens and tokenized text units is made explicit as follows:

Definition 14 (Token) A token w: String is a sequence of characters that represents
one natural language word, one punctuation mark, one numeral, or any other atomic
and semantic-carrying character sequence. A set of distinct tokens is denoted by W :=
(%01, Wa, ..., Wiy}

72

4.1 Terminology

The abstract data type Token (see Appendix B.21 on page 229) encapsulates one token.
For example, the tokens w;: Token := wj.create("New York"), wy: Token := wo.create(
": 1) ws: Token := ws.create("The"), and Wwg: Token := Wg.create("30") are contained in
text document t;: TextDocument, which encapsulates the string "New York: The con-
tract was signed on Dec. 30, 2006." Although whitespace characters often separate
tokens from each other, whitespace characters are preserved if they are integral parts of
natural language words, like the token "New York".

Definition 15 (Tokenized Text Unit) Given the text unit i: TextUnit, a tokenized text
unit i := (W, Wo,..., W) s a sequence of tokens identified in text unit 0 such that Ww;:
Token, where i = 1,2,...,]i|. The set Wy := {w | w: Token :=i[i], i=1,2,...,]i|}
contains all distinct tokens identified in tokenized text unit .

The concrete number of tokens identified in a text unit depends on domain-specific re-
quirements and the specific tokenization algorithm. Issues in tokenization are discussed in
Subsection 4.2.1. By tokenizing a text unit, we intentionally ignore whitespace characters
that separate single tokens in the original text unit. One tokenized text unit is encapsu-
lated by the ADT Tokenized TextUnit (see Appendix B.22 on page 229). For instance, let
the tokenized text unit ii;: Tokenized TextUnit comprise the sequence of strings ("The",
"contract", "was", "signed", "on", "Dec.", "30", "," "2006", ".") that corresponds
to text unit ;. The operations provided by this abstract data type can be illustrated as
follows: ii;.size() = 10, {i;.token(2) represents the token "contract", and ii;.tokens(6,9)
corresponds to the token sequence ("Dec.", "30", "," "2006").

In Definition 7 on page 59, we have introduced our notion of named entities. To actually
extract them from tokenized text units, intermediate named entities are required:

Definition 16 (Intermediate Named Entity) Let P := {pi,p2,...,pjp|} denote a set of
domain-specific named entity types that represent abstract classes and generic numerical
expressions. Given the tokenized text unit i: Tokenized TextUnit, an intermediate named
entity € := (p: P,é: String,i: Integer,j: Integer,k: Integer) is a 5-tuple comprising
named entity type p, the canonical form € of instantiated named entity type p, its unique
identifier 1, as well as the start token index j and the end token index k, where j =
1,2,... isize() and k = j,j + 1,...,.size(), such that G.tokens(j, k) corresponds to the
tokens that instantiate named entity type p in tokenized text unit 0. A set of distinct
intermediate named entities is denoted by E 1= {&;,8,,. .. NS

Given the exemplary set of named entity types P; := {company, person, date}, the
intermediate named entity €; := (date, "2006-12-30",2,6,9) may, for example, be ex-
tracted from the tokenized text unit 1i; introduced above. This intermediate named entity
is instantiated by tokens 6 through 9 that constitute the token sequence ("Dec.", "30",
"," "2006"). The abstract data types IntNamedEntity (see Appendix B.23 on page 230)
and SetOfIntNamedEntities (see Appendix B.24 on page 231) encapsulate one intermedi-
ate named entity type and one set thereof, respectively.

73

4 DIAsDEM Knowledge Discovery Process

As we adopt the IR vector-space model outlined in Subsection 2.1.2, pre-processed text
units are mapped onto numerical text unit vectors to enable pattern discovery.

Definition 17 (Text Unit Vector, Preliminary Definition) A text unit vector u € R,
where n € N, 1s an n-dimensional vector.

Characteristic properties of text unit vectors, such as the semantics of vector dimensions
and components, are defined in Subsection 4.2.5. One text unit vector is encapsulated by
the abstract data type TextUnitVector (see Appendix B.25 on page 231).

During the process of transforming text units into semantically marked-up text units,
each text unit is represented by a corresponding intermediate text unit that comprises the
original text unit along with both intermediate (e.g., the text unit vector of the current
clustering iteration) and final (e.g., the identified concept) processing results.

Definition 18 (Intermediate Text Unit) An intermediate text unit u := (: TextUnit, ii:
TokenizedTextUnit, @i : TextUnitVector,i: Integer, j: Integer,o: Concept, E: SetOfInt-
NamedEntities) is a 7-tuple comprising the original text unit 1, the processed tokenized
text unit 0, the text unit vector U, the clustering iteration identifier i, the cluster identifier
j, the domain-specific concept o that domain experts typically associate with text unit 1,
and the set of intermediate named entities E identified in text unit .

For instance, let the tokenized text unit ii;: Tokenized TextUnit encapsulate the token
sequence ("contract", "sign") obtained by pre-processing the original text unit 1, :
TextUnit, which encapsulates the sentence "The contract was signed on Dec. 30,
2004." Additionally, assume that u;: TextUnitVector represents the pre-processed text
unit i, in the vector-space model by means of the vector [0,0,0,0.12,0,0, 0,0.78,0,0].
Furthermore, the semantic concept conclusionOfContract € O; is encapsulated by o;:
Concept and E;: SetOfIntNamedEntities includes intermediate named entities extracted
from text unit ;. In this illustrative case, 0y := (0, iy, Uy, 1, 5, 01, El) is an intermediate
text unit whose text unit vector ; is assigned to cluster 5 in the first iteration. The
notion of iterative clustering is discussed in detail in Subsection 4.3.4. One intermediate
text unit is encapsulated by the ADT IntTextUnit (see Appendix B.26 on page 232).

Finally, we extend our notions of text unit layers, text documents, and text archives by
defining their intermediate counterparts. The abstract data types IntTextUnitLayer (see
Appendix B.27 on page 233), IntTextDocument (see Appendix B.28 on page 234), and
IntTextArchive (see Appendix B.29 on page 234) encapsulate the respective objects.

Definition 19 (Intermediate Text Unit Layer) Given text unit layer ¥: TextUnitLayer,
an intermediate text unit layer T := (U, Uy, . .. ,1_1|f|> is a sequence of intermediate text
units such that 0;: IntTextUnit and 6;.textUnit() = f.textUnit(i), i = 1,2,. .., T.size().

Definition 20 (Intermediate Text Document) Given the text document t: TextDocu-
ment, an intermediate text document t := (t: TextDocument, ¥: Int TextUnitLayer) is a 2-
tuple comprising the text document t and the intermediate text unit layer T that represents
a decomposition of text document t into intermediate text units.

74

4.2 Pre-Processing of Text Documents

Definition 21 (Intermediate Text Archive) Given the text archive a: TextArchive, an

intermediate text archive a = (t1,%2,..., ta) s a sequence of not necessarily distinct
intermediate text documents such that t;: IntTextDocument and t;.textDocument() =
a.textDocument (i), where 1 = 1,2, ... a.size().

4.2 Pre-Processing of Text Documents

Transforming text encoded as a character sequence into a numerical representation suit-
able for pattern discovery is the main objective of the pre-processing and transformation
steps of the generic KDT process introduced in Subsection 2.1.1. Because each spe-
cific knowledge discovery process requires an individual and goal-oriented approach to
pre-processing input textual data, the concrete pre-processing steps of the DIASDEM
knowledge discovery process are described in this section. The pre-processing tasks that
are introduced in the following subsections (i) create and tokenize text, (ii) extract named
entities, (iii) lemmatize words and disambiguate their senses if necessary, (iv) establish a
controlled vocabulary, and finally (v) map pre-processed text units onto numerical text
unit vectors.

4.2.1 Creating and Tokenizing Text Units

As explained in Section 3.1, we focus on raw text stored in plain text files. Due to the
plethora of existing file conversion programs (e.g., the Linux tool ps2ascii), this restric-
tion has only minor practical consequences. Initially, raw text documents are decomposed
into tokenized text units of the required granularity level.

Text Unit Creation Since our framework aims at semantically marking up structural
text units, reliably identifying them in input text documents is of paramount impor-
tance. According to Definition 4 on page 58, text units are strings extracted from text
documents. They represent structural text components comprising more than one word.
Input documents are decomposed into text unit layers (cf. Definition 5 on page 59) in the
first pre-processing step such that each document is associated with exactly one text unit
layer. Each text unit layer is a sequence of ordered, not necessarily contiguous, structural
text units that originate from one document. Decomposed text documents are neither
deleted nor replaced by their respective text unit layers because original documents are
an integral part of semantically marked-up text documents.

Our concept of text unit layers is illustrated in Figure 4.1, which depicts three conceiv-
able decompositions of example text tgs into text units. Adopting the notion of text as
an ordered hierarchy of content objects (cf. DeRose et al., 1990, pp. 3-6), we assume that
news item tpz consists of six sentences, each of which is either assigned to the title (i.e.,
the first sentence “USA: Weyerhaeuser may sell subsidiary.”) or to one of two paragraphs.
Figure 4.1 illustrates the hierarchical structure of document tgz and indicates sentence

75

4 DIAsDEM Knowledge Discovery Process

Title Paragraph 1 Paragraph 2

| 1

| Sentence 1 Sentence 2 Sentence 3
1
1

Sentence 4 | Sentence 5

Sentence 6 |
1
1
1

| | | | | | | | |
»
i R Ty Ty Ty Ty \

Text Document: (USA: Wey... ... sidiary. Timber gi... ... mpany. The com... ..yee unit. The mort... ... Aug.31. The comp... ... sidiary. Inearly tr... ... $46.87.>

Text Unit Layer 1: (USA: Wey... ... sidiary.) (Timber gio.. .. mpany.) <The com... ..yee unil.) (The mort... ...Aug. 31) (The comp... ... sidiary.) (In early tr... ... $46.87.>

Text Unit Layer 2: <Timber giant Weyerhaeuser Company t months that ended Aug. 31.) (The company did no... ... p 25 cents to $46.87.>

Text Unit Layer 3: (USA: Weyer may sell idiary. Timber giant Weyerhaeuser Company said Monda... ...ck Exchange, the stock was up 25 cents to $46.87.>

Figure 4.1: Text Document trs Decomposed into Three Distinct Text Unit Layers

Table 4.2: Text Document tg; Decomposed into Text Unit Layer ig;: TextUnitLayer :=
fr.create(fg;)

fg1 = (("USA: VASCO says to sell consulting unit."), ("VASCO Corp said it agreed to
sell its consulting and technical organization, VASCO Performance System, to Wizdom
Systems Inc."), ("Terms were not disclosed."), ("-Chicago Newsdesk 312-408-8787"))

boundaries by dashed arrows. Text unit layer 1 represents all six sentences as individual
text units whereas the second text unit layer models paragraphs as text units. Finally,
text unit layer 3 represents the entire document as a single text unit.

Semantically marked-up text documents comprise exactly one marked-up text unit
layer. Therefore, domain experts have to determine the required level of text unit gran-
ularity in the pre-processing phase. When making this important decision, experts have
to consider the required natural clustering tendency of text units (cf. Section 3.2). In
addition, selecting the granularity of text units simultaneously determines the granularity
of semantic markup (cf. Section 1.2). In both case studies described in Chapter 6, for ex-
ample, we created fine-grained semantic markup at the sentence level because sentences of
the respective text documents clearly exhibited a natural clustering tendency. Depending
on the concrete application domain, however, structural text units may even correspond
to main and subordinate clauses, specific sections, or entire chapters. In general, a finer
text unit granularity entails more specific semantic tags and vice versa.

The complexity of identifying text unit boundaries in documents is influenced by the
application domain, the characteristics of input text documents (e.g., original file format),
and the granularity level chosen by the expert. Ideally, existing metadata about the logical

76

4.2 Pre-Processing of Text Documents

document structure can be exploited to reliably identify chapters, headings, sections, and
paragraphs of input documents. If metadata that make explicit structural document
components are not available, a variety of specific algorithms for document structure
analysis (cf. Mao et al., 2003b) can be employed to infer the missing structural metadata.
Reviewing this specific thread of research, however, is beyond the scope of this work.

Instead of striving towards detecting arbitrary document structures, the prototype
DIASDEM WORKBENCH is highly focused on identifying sentences in text documents for
two reasons. On the one hand, sentences often convey important, self-contained facts that
are worth being semantically marked up. On the other hand, many algorithms for heuristic
sentence boundary detection are available and tend to work well in domain-specific texts
(Manning and Schiitze, 1999, pp. 134-136). Based on supervised machine learning tech-
niques, Mikheev (1998), for instance, developed a domain-independent method to detect
sentence boundaries and achieved an accuracy rate of 99.25% in a large-scale evaluation.
The heuristics applied by DTASDEM WORKBENCH to identify sentence boundaries are
outlined in Subsection 5.2.1.

In principle, any method for identifying text units can be utilized in the pre-processing
step of our framework. Hence, the abstract data type TextUnitLayer merely defines the
constructor create(finit: TextDocument) that constructs a new text unit layer by decom-
posing the input text document ti,; into i € N ordered, non-overlapping, structural text
units (1, Uy, . . ., ;) of the required granularity level (see Appendix B.7 on page 222). For
illustrative purposes, Table 4.2 depicts the result of decomposing example text document
tg; into the sentence-based text unit layer fg;: TextUnitLayer := fg;.create(fg;).

Tokenization Text units (i.e., character sequences) are divided into units called tokens in
the second pre-processing step, referred to as tokenization. Each token “is either a word
or something else like a number or a punctuation mark” (Manning and Schiitze, 1999,
p. 124). According to Fox (1992, p. 102), “tokens are groups of characters with collective
significance.” In Definition 14 on page 72, we have analogously defined tokens as sequences
of contiguous characters that represent one natural language word, one punctuation mark,
one numeral, or any other atomic and semantic-carrying character sequence. Baeza-Yates
and Ribeiro-Neto (1999, pp. 165-167) preferred the term lexical analysis to denote the
process of converting a stream of characters into a stream of words. Taking the information
retrieval perspective, lexical analysis and tokenization, respectively, is the first stage in
both automatic indexing and query processing. In our KDT process, splitting text units
into tokens is a fundamental pre-processing technique.

Intuitively, identifying tokens seems to be as easy as splitting a character sequence at
the occurrences of one or many contiguous whitespace characters that usually separate
natural language words from each other. Of course, the occurrence of whitespace serves as
the main clue for tokenizing English or German texts. Nevertheless, tokenization involves
several lexical issues that must be carefully considered. Tokens do not solely consist
of letters, and tokens are not always surrounded by whitespace characters. Under the
felicitous heading “Tokenization: What is a word?”, Manning and Schiitze (1999, pp. 124—

7

4 DIAsDEM Knowledge Discovery Process

131) discussed several problems that typically arise during tokenization:

e Punctuation marks: The substrings "disclosed. VASCO" and "organization,
VASCO" of text tg; illustrate that punctuation marks, due to layout conventions,
are often directly attached to words. During tokenization, words are separated from
attached punctuation marks, like ("disclosed", ".", "VASCO"). Periods, commas,
and semicolons, however, are often parts of tokens and do not serve as punctuation
marks. Periods may mark the end of sentences or indicate abbreviations. In the lat-
ter case, periods are inseparable parts of tokens (e.g., "Inc." in text tg; or "Aug."
in text tgs). Furthermore, punctuation marks are often integral parts of tokens that
represent numerals (e.g., "1,000.5") or date expressions (e.g., "30.12.2006").

e Hyphenation: Character sequences containing a hyphen, like "Texas-based" in
text tgo, require careful attention. One difficulty involves detecting and removing
line-breaking hyphens that are inserted to typographically improve the justification
of text. As the string "1,500-employee" in tgs illustrates, hyphens at the end
of lines cannot always be removed. Other hyphenated character sequences include
words like "so-called", which are typically regarded as one token, and words like
"Texas-based", which are mostly split into several tokens. Inconsistent spelling
(e.g., "cooperate" vs. "co-operate") within one archive adds complexity as well.

e Whitespace not indicating a word break: Unlike the above mentioned issues of not
splitting certain character sequences, the opposite problem of regarding a character
sequence comprising whitespace as one token arises as well. For instance, multi-
part words like "Stock Exchange" in text tgs, well-known proper nouns, such as
"New York" in text tgs, or other semantic-carrying character sequences, like phone
numbers, are typically considered as single tokens. However, named entities (e.g., the
company "VASCO Corp" in text fg;) are not identified during tokenization. Tokens
that include whitespace are henceforth referred to as multi-part tokens.

In the context of automatic indexing, Fox (1992, p. 103) emphasized the importance of
deciding what counts as a token in the respective indexing scheme. The author proposed
entirely removing character sub-sequences comprising, for instance, digits and punctuation
marks if they “do not make good index terms.” Since the exact case of letters is usually
irrelevant for retrieving information, Fox also advocated converting all characters into
either upper or lower case unless case distinction is indeed necessary. In contrast, the
tokenization step within our knowledge discovery process neither removes non-whitespace
characters nor converts the case of characters for one reason: Named entity extraction
described in the next subsection analyses and takes advantage of existing digits, special
characters (e.g., "$", "/", and "+"), and the case of letters. In particular, upper-case
characters facilitate the automated recognition of named entities in English texts (e.g.,
"Philip Knisely" and "Constellation Capital" in text fE5).

Baeza-Yates and Ribeiro-Neto (1999, p. 167) pointed out that all lexical analysis oper-
ations can be implemented without difficulty. However, “careful thought should be given

78

4.2 Pre-Processing of Text Documents

Table 4.3: Tokenized Text Units after Tokenizing the Elements of Text Unit Layer fg;

lig1,1: TokenizedTextUnit = ("USA", ":", "VASCO", "says", "to", "sell", "consulting",
"unit", " ||>

lig1,2: TokenizedTextUnit = ("VASCO", "Corp", "said", "it", "agreed", "to", "sell", "its",
"consulting", "and", "technical", "organization", ",", "VASCO", "Performance", "System",
II’II’ lItOII’ II"‘,:'de()Inll7 IlSystemSll’ "InC. Il>

g1 3: Tokenized TextUnit = ("Terms", "were", "not", "disclosed", ".")

g1 4: TokenizedTextUnit = ("-", "Chicago", "Newsdesk", "312", "-" "408", "-" "8787")

Algorithm 4.1 DecomposeAndTokenizeTextDocuments
Input: (& TextArchive)
Output: (a: IntTextArchive)

1: a: IntTextArchive := a.create() // initialize output int. text archive
2: for all i: Integer := 1,2, ..., 4a.size() do // iterate through text documents
3: i TextUnitLayer := f.create(a.textDocument ()) // decompose text document
4: T IntTextUnitLayer := T.create() // initialize int. text unit layer
5. for all j: Integer := 1,2, ..., T.size() do // iterate through text units
6 : TextUnit := F.textUnit(j) // extract jth text unit
7 ti: Tokenized TextUnit := ii.create(l) // tokenize jth text unit
8 t: IntTextUnit := G.create(t, {i, null, null, null, null, null) // create int. text unit
9: F.appendIntTextUnit (@) // append int. text unit
10: end for
11: 1 IntTextDocument := t.create(&.textDocument (i), T) // create int. text document
12: a.appendIntTextDocument(t) // append int. text document
13: end for

to each one of them” since lexical analysis operations may have a profound impact. For
example, Fox (1992) presented dedicated algorithms and data structures for lexical anal-
ysis based on finite state machines. In our framework, the ADT Tokenized TextUnits
therefore provides the constructor create(t,: TextUnit) that takes a text unit U as
input and divides it into a sequence of tokens (see Appendix B.22 on page 229). The
prototypical implementation of this tokenization algorithm within DIASDEM WORK-
BENCH is outlined in Subsection 5.2.1. To illustrate our notion of tokenization, Table 4.3
depicts four tokenized text units created by tokenizing the elements of text unit layer
ig1: TextUnitLayer.

Effect on KDT Process Flow Algorithm 4.1 (DecomposeAndTokenizeTextDocuments)
encapsulates the initial pre-processing tasks of decomposing text documents and tok-
enizing the resulting text units. Additionally, this algorithm transforms the input text
archive into an intermediate text archive required by subsequent document pre-processing
tasks. Consequently, Algorithm 4.1 is the first algorithm of the KDT process flow to be
parameterized during the interactive knowledge discovery.

79

4 DIAsDEM Knowledge Discovery Process

Table 4.4: Excerpt from the Extended Named Entity Hierarchy (Source: Sekine et al.,

2002) and Exemplary Named Entities

Named Entity Type

Exemplary Named Entities

(top)
name
person "Philip Knisely"
organization
company "VASCO", "VASCO Corp", "Wizdom Systems Inc.", "Helmerich"
market "New York Stock Exchange"
location "USA", "Chicago", "Baytown, Texas", "Woodland Hills, Calif."
product "modular classrooms"
time_top
timex "Monday", "end of November"
date "August 30", "Aug. 31", "October 21"
periodx "8 months"
numex "1,500-employee"
money "$48 million", "$2.1 billion", "25 cents", "$46.87"

4.2.2 Extracting Named Entities

Following text decomposition and tokenization, recognizing domain-specific named en-
tities is the second main pre-processing step. Informally introduced in Section 1.2 and
defined in Section 3.1, named entities are instantiations (e.g., "Wizdom Systems Inc.")
of named entity types (e.g., company). More precisely, named entity types are abstract
classes and generic numerical expressions whereas named entities are 2-tuples comprising
the respective named entity type and a character sequence that represents a canonical
form of the instantiated named entity type (cf. Definition 7 on page 59). Given the set
Pg1 = {person, company, location, money} of domain-specific named entity types, the
excerpt "System, to Wizdom Systems Inc. Terms were" from text document tg;, for
example, contains the named entity eg; 4 := (company, "Wizdom Systems Inc.").
Named entity extraction is highly domain-dependent due to the variety of existing and
possibly interesting named entities. Sekine et al. (2002), for instance, compiled a hier-
archy of approx. 150 named entity types. Table 4.4 depicts a small excerpt from this
hierarchy and exemplifies named entity types through named entities occurring in texts
tg; through tgs. Besides time expressions (i.e., timeex), period expressions (i.e., peri-
odx), and numerical expressions (i.e., numex), these five texts primarily contain various
names of companies and locations. The latter named entity type is in fact the parent
concept of more specific locations, such as city, country, or postal_address. In addi-
tion to 150 named entity types listed in the named entity hierarchy proposed by Sekine
et al., tagging documents from a narrow or exceptional domain might necessitate the
instantiation of domain-specific named entity types, such as pharmaceutical_substance,
international_security_identification_number, or statutory_source.

80

4.2 Pre-Processing of Text Documents

Initially, domain experts thus have to carefully select relevant and domain-specific
named entity types. Since extracted named entities ultimately serve as attributes of se-
mantic XML tags, significant importance must be attached to instantiations of elements
in the set of relevant named entity types. Furthermore, named entities to be identified
should occur sufficiently frequently in the input text archive to justify their extraction.
Being able to reliably identify certain named entities is by no means a reason to actually
extract them. Extracting phone numbers from the five example texts, which only occur in
the context of the publishing newsroom, adds no value if these news items are semantically
annotated on behalf of Reuters itself. In contrast, identifying, for instance, names of cities
in news items is an important prerequisite to distinguish between different branch offices
of the same company based on their locations. Undoubtedly, instances of fundamentally
important named entity types within one application domain may constitute meaningless
tokens in another domain.

As the literature review in Subsection 2.1.3 has revealed, recognizing names of persons,
companies, and locations in general English news items “was more or less a solved problem”
in 1998 (Jackson and Moulinier, 2002, p. 77). In addition, both freely available (e.g., cf.
Cunningham, 2002) and commercial (e.g., cf. Hammond et al., 2002; Ferrucci and Lally,
2004) tools nowadays allow for the extraction of domain-independent and domain-specific
named entities. Due to the inherent domain dependency of named entity extraction, we
refrain from presenting a specific algorithm. Instead, we subsequently make use of the
operation identifyNamedEntities(P: SetOfNamedEntityTypes) defined by the abstract
data type IntTextUnit (see Appendix B.26 on page 232). This operation takes a set
of domain-specific named entity types as input and identifies their instantiations in the
tokenized text unit associated with the respective intermediate text unit. By utilizing
an abstract algorithm for named entity recognition, we again emphasize the necessity of
domain experts to supply detailed descriptions of named entity types as an important
input to our knowledge discovery process (cf. Figure 3.2 on page 65). These descriptions
must be sufficiently precise to enable the re-use of adequate algorithms or to allow for the
implementation of new, dedicated named entity extractors.

In our framework, neither the canonical forms of identified named entities (e.g., "2006-
12-30") nor the respective tokens themselves, such as ("Dec.", "30", ",", "2006"),
constitute features in the pattern discovery step because they convey too fine-grained
metadata. Unlike values of named entities, however, the mere fact that instances of certain
named entity types occur in a text unit is indeed an auspicious feature. To find groups of
semantically similar text units, measuring the frequency of occurrence of selected named
entity types tends to provide more abstract insights into the semantic document structure
than treating each named entity as an individual feature. As tokens that correspond to
identified named entities are thus useless, we advocate replacing them with specific tokens,
so-called named entity placeholders that are defined as follows:

Definition 22 (Named Entity Placeholder) Given the intermediate named entity € Int-
NamedEntity identified in tokenized text unit i: TokenizedTextUnit, a named entity
placeholder is a token that uniquely identifies € within the scope of its intermediate text

81

4 DIAsDEM Knowledge Discovery Process

Table 4.5: Processed Text Units of Intermediate Text Unit Layer Tg; (cf. Table 4.3 on
Page 79) after Extracting Named Entities

g1 = ("USA", ":", gy 1.placeholder(), "says", "to", "sell", "consulting", "unit", ".")
lig1,2 = (€m1,2.placeholder(), "said", "it", "agreed", "to", "sell", "its", "consulting",
"and", "technical", "organization", ",", &gy s.placeholder(), ",", "to", €r1 4.placcholder())
lig1,3 = ("Terms", "were", "not", "disclosed", ".")

figy 4 = ("-", 8gy 5.placeholder(), "Newsdesk", "312", "~", "408", "-", "g78T")

document. A named entity placeholder substitutes all tokens that instantiate intermediate
named entity € in tokenized text unit .

For any intermediate named entity, the specific placeholder token is created by exe-
cuting the operation placeholder(): Token, which is provided by the abstract data type
IntNamedEntity (see Appendix B.23 on page 230). Subsequent to named entity identi-
fication, all tokens that correspond to named entities are replaced by their respective
placeholders. Thereby, we considerably reduce the dimensionality of textual data in
terms of the number of distinct tokens occurring in a text archive. To that end, the
abstract data type IntTextUnit (see Appendix B.26 on page 232) defines an operation
replaceNamedEntities(). This operation can be implemented straightforwardly since it
only replaces all tokens that instantiate an intermediate named entity identified in the
respective tokenized text unit with appropriate named entity placeholders.

To illustrate our notion of named entity extraction, Table 4.5 depicts the processed,
tokenized text units iig; ;: TokenizedTextUnit through iig; 4: TokenizedTextUnit, which
are contained in the intermediate text unit layer Tgi: IntTextUnitLayer (cf. Table 4.3 on
page 79), after both identification and replacement of named entities. Furthermore, the
identified intermediate named entities along with their placeholders are listed in Table 4.6.
For example, the tokenized text unit iig; o contains placeholders for three named entities.
More specifically, the expression € s.placeholder() stands for the intermediate named
entity "VASCO Corp" of type company that corresponds to tokens 1 and 2 of its parent
tokenized text unit {ig; o = I'w1.processed TextUnit(2).

Effect on KDT Process Flow Algorithm 4.2 (ExtractNamedEntities) performs the pre-
processing tasks of identifying named entities in tokenized text units and replacing them
with named entity placeholders. As input, this algorithm takes a set of domain-specific
named entity types and an intermediate text archive. Subsequent to their extraction
from text units, named entities are stored in the set of intermediate named entities of the
respective intermediate text units. Following DecomposeAndTokenizeTextDocuments,
ExtractNamedEntities is the second algorithm in the KDT process flow that has to be
parameterized during the knowledge discovery process. Named entity identification is

82

4.2 Pre-Processing of Text Documents

Table 4.6: Intermediate Named Entities Identified in Tokenized Text Units of Intermedi-
ate Text Unit Layer Tg; (cf. Table 4.3 on Page 79)

Intermediate Named Entity
Named Entity Placeholder

€g1,1: IntNamedEntity = (company, "VASC0", 1, 3, 3) €g1,1-placeholder()
€g1,2: IntNamedEntity = (company, "VASCO Corp",2,1,2) €g1,2-placeholder()
€p1,3: IntNamedEntity = (company, "VASCO Performance System",3,13,15) &g 3.placeholder()
€p1,4: IntNamedEntity = (company, "Wizdom Systems Inc.",4,18,20) €g1 4.placeholder()
€g1,5: IntNamedEntity = (place, "Chicago",5,2,2) €g1 5-placeholder()

Algorithm 4.2 ExtractNamedEntities

Input: (a: IntTextArchive, P: SetOfNamedEntity Types)
Output: (a: IntTextArchive)

1: for all i: Integer := 1,2, ...,4a.size() do // iterate through int. text documents
2: for all j: Integer := 1,2, ..., a.intTextUnitLayerSize(i) do // iterate through int. text units
3 a.intTextUnit (i, j).identifyNamedEntities(P) // identifiy named entities
4: a.intTextUnit (i, j).replaceNamedEntities() // replace named entities with placeholders
5 end for

6: end for

deliberately executed before lemmatization, which is described in the next subsection,
because replacing words with their grammatical root forms may trigger negative side
effects on named entity extraction.

4.2.3 Lemmatizing Words and Word Sense Disambiguation

According to the pre-processing phases outlined in Subsection 2.1.2, lexical analysis, or
tokenization, is followed by the removal of meaningless, though frequently occurring, stop-
words (Baeza-Yates and Ribeiro-Neto, 1999, p. 167). In an IR context, stopwords are
removed because they have a very low discriminatory power for retrieval purposes. Be-
sides, their elimination reduces the index size considerably. In our framework, removing
stopwords is not compulsory since we do not build a persistent document index. The
straightforward (cf. Fox, 1992) procedure of stopword removal is optional and hence de-
liberately omitted from discussion in this section on text pre-processing. Having tokenized
text units and extracted named entities, the third main document pre-processing step in
our KDT process is lemmatization and the optional word sense disambiguation.

Lemmatization Due to the more or less complex syntax rules of natural languages, text
documents mostly contain many different word variants. The singular and plural noun
forms (e.g., "acquisition" in text document EEQ and "acquisitions" in text ‘EEg,) or
conjugated verb forms (e.g., "sells" and "sell" in text tgs) are examples of syntactical

83

4 DIAsDEM Knowledge Discovery Process

word variations that do not regularly affect the word meaning. During document pre-
processing, these word variants are automatically mapped onto their grammatical root
forms (e.g., "acquisition" and "sell"). Thereby, the lemmatization step facilitates the
use of a controlled vocabulary. The benefits of lemmatization become apparent when
processing text documents composed of a highly inflective language, like German.

Lemmatization is the activity of determining lemma forms of natural language words.
The term lemma denotes a lexical entry that represents all inflected forms of one word in
a dictionary (cf. Bowker and Pearson, 2002, pp. 166-167). For example, the infinitive is
used as the lemma of conjugated verbs whereas nouns are typically represented by their
singular forms (Saeed, 2003, p. 56). To that end, lemmatization algorithms utilize the
part of speech information (e.g., noun vs. verb) of inflected word forms. Unlike the notion
of lemma forms, the term stem denotes the portion of a word that is left after removing its
affixes, such as prefixes and suffixes (Baeza-Yates and Ribeiro-Neto, 1999, pp. 168-169).
Stems do not necessarily correspond to lexical entries. For instance, the token "connect"
is the stem of the inflected verb forms "connected" and "connecting", as well as the
noun forms "connection" and "connections". This example illustrates that stemming
does not utilize the part-of-speech information of words to be stemmed.

We advocate employing a sophisticated lemmatization algorithm instead of simply stem-
ming words because lemma forms convey more semantic information than word stems.
Manning and Schiitze (1999, p. 132), for instance, noticed that stemming “often costs
you a lot of information.” Since canonical dictionary entries depend on the part-of-speech
information of words, their meaning can be more easily recognized by domain experts
while establishing a domain-specific controlled vocabulary (cf. next subsection). Unlike
stems, lexical units can be looked up directly in a conventional dictionary or in a lexical
database (e.g., WORDNET; cf. Fellbaum, 1998). In addition, content-descriptive labels
for qualitatively acceptable text unit clusters are automatically suggested on the basis of
frequently occurring features and text unit descriptors, respectively (cf. Subsection 4.4.1).
Again, the semantic expressiveness of word stems, such as "comput", is rather limited
when compared with lemma forms (e.g., "computer", "computational", "compute", or
"precompute"). Especially for less inflective languages like English, however, the coarser
results of stemming words can be considered an approximation of lemmatizing them.

Frakes (1992) surveyed four different approaches to stemming English words. According
to Baeza-Yates and Ribeiro-Neto (1999, pp. 168-169), the seminal suffix removal algorithm
proposed by Porter (1980a) is the most popular one due to its simplicity. This algorithm
stems English words by applying a series of rules for suffix stripping. In the challenging
domain of automated lemmatization, Schmid (1994, 1999), for example, introduced a
language-independent, fast, high-quality part-of-speech tagger based on the supervised
learning paradigm. Besides determining the parts of speech, TREETAGGER outputs the
lemma form of words as well. The system achieved an accuracy of between 96.05% and
97.53% in experiments with a German newspaper corpus.

Consequently, we do not suggest one specific lemmatization algorithm, but utilize the
abstract operation lemmatizeWords() defined by the abstract data type IntTextUnit (see

84

4.2 Pre-Processing of Text Documents

Appendix B.26 on page 232). When executed on a specific intermediate text unit, this
operation modifies the processed, tokenized text unit contained in the intermediate text
unit. Concretely, lemmatizeWords() replaces all tokens that are natural language words
in the tokenized text unit with their grammatical root forms.

Word Sense Disambiguation Natural language expressions can be highly ambiguous.
In particular, lexical ambiguity arises when one word has many senses and meanings.
Homonyms are unrelated senses of the same phonological word. Homonyms can be further
subdivided into homographs, namely, unrelated senses of the same written word, and
homophones that are unrelated senses of the same spoken word (Saeed, 2003, pp. 63—
64). In contrast to homonyms, polysemes are different, yet somehow related, senses of
one phonological word. Since our framework is not rooted in the discipline of lexicology,
we differentiate neither between homonymy and polysemy nor between the two forms
of homonymy although only homographs are relevant to our framework. Henceforth,
multiple senses of the same written word are thus referred to as homonyms.

Word sense disambiguation is the activity of assigning words in a text to their appro-
priate senses listed in a lexicon (cf. Leacock and Chodorow, 1998, p. 265). This task
determines the sense of an ambiguous word, which is invoked in a concrete use of this
word (Manning and Schiitze, 1999, p. 229). For example, the lemmatized token "term"
occurring in the text unit "Terms were not disclosed." is highly ambiguous unless
the context in which it appears is taken into consideration. The English lexical database
WORDNET (cf. Fellbaum, 1998), for example, lists seven different senses, or homonyms,
for the noun "term". In the third text unit of news item tg;, this noun is used in the
sense ‘statement of what is required as part of an agreement’.

Manning and Schiitze (1999, p. 132) emphasized that lemmatization implies disam-
biguation because the token "lying" may, for example, represent either the lexical entry
‘making a statement one knows to be untrue’ or ‘having one’s body in a flat position.” In
the pre-processing step of our framework, nevertheless, we separate the mandatory lemma-
tization step, which converts words into their lemma forms, from the optional word sense
disambiguation step, which maps ambiguous lemmas onto their appropriate senses, for
three reasons. Firstly, existing lemmatization systems (e.g., TREETAGGER, cf. Schmid,
1999) do not necessarily disambiguate word senses as a byproduct. Secondly, word sense
disambiguation may not be necessary for text documents originating from a very narrow
or exceptional domain and which are thus less ambiguous. Since automated word sense
disambiguation is error-prone as well, its application may thirdly be restricted to a few
important words (e.g., "interest" in business news items) that are both frequently used
and associated with multiple domain-specific senses.

A large number of algorithms for automated word sense disambiguation are available
(e.g., Leacock and Chodorow, 1998; Manning and Schiitze, 1999, p. 235-256). Therefore,
our framework only exploits the operation disambiguateWordSenses provided by the ADT
IntTextUnit (see Appendix B.26 on page 232). This abstract operation modifies the
tokenized text unit associated with an intermediate text unit by appending a sense tag,

85

4 DIAsDEM Knowledge Discovery Process

Algorithm 4.3 LemmatizeAndDisambiguateWords

Input: (a: IntTextArchive)
Output: (a: IntTextArchive)

1: for all i Integer := 1,2, ...,a.size() do // iterate through int. text documents
2: for all j: Integer := 1,2, ..., a.intTextUnitLayerSize(i) do // iterate through int. text units
3 a.intTextUnit (4, j).lemmatizeWords() // lemmatize natural language words
4: a.intTextUnit(i, j).disambiguateWordSenses() // disambiguate word senses
5 end for

6: end for

Table 4.7: Processed Text Units of Intermediate Text Unit Layer tg; (cf. Table 4.3 on
Page 79) after Lemmatization and Word Sense Disambiguation

lg1,1 = ("USA", ":", &gy 1.placeholder(), "say", "to", "sell", "consulting", "unit", ".")
g1 2 = (€1 2.placeholder(), "say", "it", "agree", "to", "sell", "its", "consulting", "and",
"technical", "organization", ",", €gy s.placeholder(), ",", "to", €gy 4.placeholder())

lig1,3 = ("term/s:agreement", "be", "not", "disclose", ".")

fig1 4 = ("=", &gy 5.placeholder(), "Newsdesk", "312", "=, "408", "-" “8787")

which indicates the concrete word sense, to all tokens that are homonymous natural
language words. Ultimately, the extent of sense disambiguation depends on linguistic
characteristics and the semantic diversity of the domain.

Effect on KDT Process Flow Given an intermediate text archive, Algorithm 4.3 (Lem-
matizeAndDisambiguateWords) lemmatizes and disambiguates word senses in intermedi-
ate text units. Following DecomposeAndTokenizeTextDocuments and ExtractNamedEn-
tities, LemmatizeAndDisambiguateWords is the third algorithm to be executed in the
pre-processing phase of our interactive knowledge discovery process. The implementation
of these two pre-processing tasks in DTASDEM WORKBENCH is outlined in Subsec-
tion 5.2.1.

Table 4.7 illustrates the effect of applying the algorithm LemmatizeAndDisambiguate-
Words to the processed text units of intermediate text unit layer Tg;. For example, the
inflected word forms "says" and "said" are replaced with their infinitive "say". The
capitalized plural noun "Terms" is substituted by its canonical form "term". In addition,
the appropriate sense tag "/s:agreement" is appended to the lemmatized token "term",
which results in the lemmatized and disambiguated token "term/s:agreement".

4.2.4 Establishing a Controlled Vocabulary

As explained in Subsection 2.1.2, selecting index terms and constructing a term catego-
rization structure (e.g., thesaurus) are the fourth and fifth, respectively, text operation

86

4.2 Pre-Processing of Text Documents

of document pre-processing in information retrieval. In the pre-processing phase of our
knowledge discovery process, these highly interdependent steps are combined into the
semi-automated task of establishing a domain-specific controlled vocabulary. The result
provides the basis for transforming pre-processed text units into a numerical representa-
tion suitable for pattern discovery, as discussed in Subsection 4.2.5. In this subsection,
we first introduce our approach to feature!' selection and explain the rationale behind it.
Secondly, we define our notion of a controlled vocabulary and related terminology for the
scope of this work. Thirdly, the usage of domain-specific thesauri as controlled vocabu-
laries is discussed. Finally, we outline supportive techniques that facilitate the laborious,
but nonetheless crucial, task of establishing a controlled vocabulary.

Feature Selection After intensive pre-processing, text units are mapped onto numerical
text unit vectors that in turn constitute the structured input data to a conventional
clustering algorithm in the pattern discovery step. However, what numerical features shall
represent pre-processed, though nevertheless unstructured, text units? This fundamental
question is addressed by feature selection? as part of the transformation step in the generic
KDT process, which is depicted in Figure 2.1 on page 22.

The higher the dimensionality (i.e., the number of features) of a fixed-size input data
set, the worse the performance of many knowledge discovery algorithms tends to be in
terms of result quality and required resources (e.g., cf. Hand et al., 2001, pp. 193-196).
This phenomenon is well known as the curse of dimensionality, “a malediction that has
plagued the scientist from earliest days” (Bellman, 1961, p. 94). In particular, the per-
formance of clustering algorithms (Aggarwal and Yu, 2000, pp. 70-71) and classification
algorithms (Sebastiani, 1999, p. 6) tends to decline drastically as the dimensionality of
the input data increases. According to Hand et al. (2001, p. 194), feature selection is a
fairly general, but nevertheless sensible, strategy when analyzing high-dimensional data.
Selecting appropriate features refers to choosing a subset of the original variables by elim-
inating redundant and uninformative ones (Kim et al., 2000, p. 365). Feature selection
may also involve constructing new features from the original ones (Guyon and Elisseeft,
2003, p. 84). Clearly, finding useful features ultimately depends on the objectives of the
knowledge discovery task at hand (Fayyad et al., 1996b, p. 10). Since clusters of seman-
tically similar text units shall be identified in the pattern discovery phase of our KDT
process, features of text units must properly reflect their content.

Feature selection techniques are broadly divided into supervised methods for classifica-
tion tasks and unsupervised algorithms for clustering tasks (cf. Yang and Pedersen, 1997;
Guyon and Elisseeff, 2003). In pursuing our knowledge discovery objectives, we focus on
the latter techniques since unsupervised learning techniques (i.e., clustering algorithms)
are employed in our pattern discovery phase. Unlike training data sets prepared for text
classification tasks, text units in training archives are not assigned to a priori known

IThe terms variable, attribute, and measurement are synonyms of the term feature in this work.
2Variable selection and dimensionality reduction are synonyms of feature selection in this work.

87

4 DIAsDEM Knowledge Discovery Process

semantic concepts because our framework aims at inferring them. In principle, three
unsupervised approaches to selecting features of text units can be distinguished:

1. Choosing all available features without performing any selection constitutes the
naive approach. Unless the number of remaining distinct terms after pre-processing
the input archive is relatively small, their meanings are reliably disambiguated, and
synonymous terms do not occur, this simplistic approach is disadvantageous due to
the effects related to the curse of dimensionality. In contrast to dimension-sensitive
KDT applications, however, full text indexing is commonly employed by Web-scale
information retrieval systems (cf. Baeza-Yates and Ribeiro-Neto, 1999, p. 171).

2. Manual, semi-automated, or automated feature selection involves identifying a lim-
ited number of semantic-carrying content descriptors (cf. Subsection 2.1.2) that are
capable of representing the topicality, or the subject, of documents. Research in
information retrieval has produced a variety of techniques to select appropriate con-
tent identifiers and index terms, respectively (cf. Baeza-Yates and Ribeiro-Neto,
1999, pp. 169-170). For example, representative methods for topic identification in
text have been reviewed in Subsection 2.2.1. Once content descriptors are manually,
or at best automatically, chosen (e.g., cf. Moens, 2000, pp. 77-102), they form a
reduced feature space and correspond to a domain-specific controlled vocabulary or,
synonymously, an indexing language. Each text unit is henceforth represented by
the text descriptors that occur therein (cf. Korfhage, 1997, pp. 105-110).

3. Automated feature creation methods map text unit vectors from a high-dimensional
input feature space onto a significantly lower-dimensional feature space. These tech-
niques compute novel numerical variables that make hidden semantic relationships
between different terms as explicit as possible. For example, latent semantic index-
ing exploits term co-occurrences within documents and drastically reduces the fea-
ture space by computing the singular value decomposition of the term-by-document
matrix (Deerwester et al., 1990; Manning and Schiitze, 1999, pp. 554-564). Other
techniques, such as concept decomposition (Dhillon and Modha, 2001) and con-
cept indexing (Karypis and Han, 2000b), employ clustering algorithms to first iden-
tify & document clusters and subsequently use their centroid vectors to form a k-
dimensional feature space onto which document vectors are finally mapped.

The DIASDEM framework adopts the second approach to feature selection. We favor
establishing a domain-specific controlled vocabulary over the alternatives for three reasons.
Firstly, text units have to be represented such that their semantic content is retained as
much as possible (cf. Hand et al., 2001, p. 457). Since computational problems of clustering
algorithms induced by a high-dimensional feature space must be avoided simultaneously,
treating each distinct term as an individual feature is ruled out. The remaining two reasons
in favor of creating a controlled vocabulary are related to the objective of our framework,
namely, deriving content-descriptive, human-readable cluster labels and names of semantic

88

4.2 Pre-Processing of Text Documents

XML tags, respectively. Secondly, we consequently refrain from utilizing methods that
compute new numerical features because techniques like latent semantic indexing make
the interpretation of clustering results more difficult (Liu et al., 2003, p. 488). Guyon and
Elisseeff (2003, p. 1159) emphasized the importance of utilizing domain knowledge during
feature selection. Assuming the existence of domain knowledge (e.g., common synonyms
of terms) on the part of the human expert, a controlled vocabulary thirdly allows for its
seamless integration into the KDT process.

Undoubtedly, creating and maintaining a domain-specific controlled vocabulary requires
costly human efforts. Even methods for the automatic establishment of controlled vocab-
ularies have to be supervised to ensure a high quality of the resulting term collections.
Nevertheless, we strongly advocate constructing a dedicated controlled vocabulary dur-
ing feature selection as it forms an important basis for generating high-quality semantic
markup. We briefly survey techniques that support domain experts in selecting appropri-
ate content identifiers after introducing additional, framework-specific terminology and
discussing the use of thesauri as specific controlled vocabularies.

Terminology Korfhage (1997, p. 317) defined the term controlled vocabulary as a “re-
stricted set of words and phrases that are used to describe documents” in a given text
archive. Colomb (2002, p. 87) characterized a controlled vocabulary as an information
structure that is a “collection of terms from which descriptors are drawn.” This set of
text descriptors® is used to concisely represent or summarize the content of associated
full text documents (Colomb, 2002, p. 31). Prior to clarifying our terminology related to
controlled vocabularies, the auxiliary notion of atomic concepts shall be introduced:

Definition 23 (Atomic Concept) An atomic concept is one unit of thought whose se-
mantic content can be re-expressed by a combination of other and different concepts.

The above definition is deliberately analogous to the standardized notion of concepts
in the context of subject indexing (cf. ISO 5963, 1985, p. 1). In our framework, however,
atomic concepts are intentionally distinguished from concepts (cf. Definition 6 on page 59).
The latter, higher-level notion of concepts denotes a thought that domain experts typically
associate with a group of semantically similar text units, such as sentences or paragraphs.
Unlike atomic concepts (e.g., Acquisition or Announcement), concepts concisely sum-
marize text units. More specifically, concepts are mostly combinations of several atomic
concepts (e.g., AcquisitionAnnouncement). Our framework-specific distinction between
atomic concepts and higher-level, typically composite concepts is inspired by the theory of
conceptual atomism, as discussed by Laurence and Margolis (1999, pp. 59-71). This cog-
nitive science theory stipulates that lexical concepts, which we refer to as atomic concepts,
are primitive and have no structure. Relevant atomic concepts are either represented by
text unit descriptors or text unit non-descriptors.

3The terms content identifier, keyword, and index term are considered as synonyms of text descriptor.

89

4 DIAsDEM Knowledge Discovery Process

Definition 24 (Text Unit Descriptor) A text unit descriptor is a token that is consis-
tently used to represent one atomic concept when characterizing the content of text units.

Our notion of text unit descriptors* intentionally resembles the standardized defini-
tion of a preferred term in the context of indexing documents (cf. ISO 5963, 1985, p. 1).
For example, text unit descriptors denote natural language words (e.g., the tokens "an-
nouncement" and "acquisition") or named entity types (e.g., company). The latter are
obtained via named entity placeholders that occur in pre-processed text units. Eventu-
ally, domain-specific descriptors correspond to the dimensions of the reduced feature space
required to map pre-processed text units onto vectors of moderate dimensionality.

Text unit non-descriptors are a second category of tokens that are not directly a part of
the feature space. Nonetheless, they convey important semantic information as each text
unit non-descriptor represents an atomic concept that is equal or otherwise semantically
related to an atomic concept represented by a text unit descriptor.

Definition 25 (Text Unit Non-Descriptor) A text unit non-descriptor is a token that
(i) represents one atomic concept and (ii) directly or indirectly references one associated
text unit descriptor. The atomic concept represented by a text unit non-descriptor is equal
or otherwise semantically related to the atomic concept of its associated text unit descrip-
tor. When characterizing the content of text units, the associated text unit descriptor is
consistently used to represent the atomic concept of a text unit non-descriptor.

The above definition of text unit non-descriptors® is broader than the standardized
notion of a non-preferred term in the context of subject indexing (cf. ISO 5963, 1985,
p. 1). A non-descriptor and its associated descriptor are synonyms if they denote the
same atomic concept with different tokens. Unlike non-preferred terms defined by ISO
5963 (1985), the relationship between atomic concepts of a non-descriptor and its as-
sociated descriptor can also be one of hyponymy (i.e., relation of inclusion; cf. Saeed,
2003, pp. 68-70), meronymy (i.e., part—whole relationship; cf. Saeed, 2003, pp. 70-71),
or any other conceivable kind. For example, the disambiguated and sense-tagged token
"statement/s:announcement" is a non-descriptor associated with the synonymous text
unit descriptor "announcement". Furthermore, the exemplary non-descriptor "takeover"
references a broader term, namely, the descriptor "acquisition". Thus, the content of
text units comprising the tokens "statement/s:announcement" and "takeover" is char-
acterized by the descriptors "announcement" and "acquisition".

Having introduced text unit descriptors and non-descriptors, we proceed by defining
our notion of controlled vocabulary terms and our notion of controlled vocabularies.

Definition 26 (Controlled Vocabulary Term) The 4-tuple v := (Ww: Token, i: Integer, d:
Boolean, j: Integer) is a controlled vocabulary term comprising the token W, a unique
term wdentifier i, the boolean variable d whose value indicates the term type, and the term

4Henceforth, the term descriptor is a synonym of the term text unit descriptor.
5Henceforth, the term non-descriptor is a synonym of the term text unit non-descriptor.

90

4.2 Pre-Processing of Text Documents

wdentifier 7 of an optionally associated controlled vocabulary term. If d = true, controlled
vocabulary term v is a text unit descriptor and j = null. Otherwise, controlled vocabulary
term v is a text unit non-descriptor and consequently j # null.

The abstract data type ControlledVocabularyTerm (see Appendix B.30 on page 235)
encapsulates one controlled vocabulary term. For instance, the controlled vocabulary
term ("statement/s:announcement",2 false, 1) is a non-descriptor that directly refer-
ences the associated controlled vocabulary term ("announcement",1,true, null), which
represents a text unit descriptor. Furthermore, the controlled vocabulary term ("public
statement", 3, false, 2) illustrates an indirect reference from a non-descriptor via the di-
rectly referenced non-descriptor "statement/s:announcement", which in turn provides a
link to the associated descriptor "announcement". Finally, a set of controlled vocabulary
terms constitutes a controlled vocabulary within the scope of our framework:

Definition 27 (Controlled Vocabulary) The non-empty set V := {vi,va, ..., vy} is a
controlled vocabulary comprising the controlled vocabulary terms v;: ControlledVocabu-
laryTerm, where i = 1,2,...,|V|, such that any token is represented by at most one
controlled vocabulary term, and there exists one directly or indirectly associated text unit
descriptor for each text unit non-descriptor. All text unit descriptors in controlled vocab-
ulary V are elements of the non-empty set Vp := {v | v: ControlledVocabularyTerm &
V s.t. v.isDescriptor() = true} C V and satisfy the constraint v;id() = j, where
v;: ControlledVocabularyTerm € Vp and j =1,2,...,|Vp|.

One controlled vocabulary is encapsulated by the ADT ControlledVocabulary (see Ap-
pendix B.31 on page 235). Ultimately, the dimensionality of text unit vectors, which
numerically represent pre-processed text units, is determined by the number of selected
descriptors and the cardinality of the set Vp comprising all descriptors, respectively.

The set of descriptors occurring in a text unit constitutes a limited representation of
textual content, which is referred to as a text unit surrogate (cf. Korfhage, 1997, pp. 21—
24). Counting and appropriately weighting the frequency of descriptors in text units is
a prerequisite for transforming text unit surrogates into vectors. This structured and
numerical representation of text unit surrogates is required by most knowledge discovery
algorithms. Although text unit surrogates represent as much semantic content as per-
ceived necessary by the domain expert, they do not reflect all available information about
the underlying text unit. For example, this bag-of-descriptors representation of textual
content entirely, yet intentionally, disregards the ordering of terms.

Ideally, a controlled vocabulary represents a consistent set of domain-specific terms (i.e.,
atomic concepts) that are appropriate to characterize the content of text units. Taking the
information retrieval perspective, Korfhage (1997, pp. 108-109) and Colomb (2002, pp. 34—
35) discussed two desirable, application-independent properties of indexing languages.
Firstly, specificity denotes the depth of coverage of index terms. A higher specificity is
reflected by less abstract index terms and vice versa. In our framework, the adequate
level of specificity of text unit descriptors depends on domain-specific requirements. As

91

4 DIAsDEM Knowledge Discovery Process

Table 4.8: Excerpt of ISO-2788 Thesaurus for Text Documents tg; through tg5 and Cor-
responding DIASDEM-Specific Controlled Vocabulary Terms

Thesaurus Entry Controlled Vocabulary Term
announcement ("announcement", 1, true, null)
UF statement (announcement)
statement (announcement) ("statement/s:announcement", 2, false, 1)
USE announcement
stock ("stock", 4, true, null)
NT common stock
common stock ("common stock",5, false, 4)
BT stock

the number of descriptors increases proportionally to specificity, however, the positive
impact of more specific descriptors has to be balanced with negative effects related to the
curse of dimensionality. Secondly, exhaustivity refers to the breadth of coverage of index
terms. An indexing language is exhaustive if each document can be assigned at least
one content identifier. In contrast to information retrieval systems, complete exhaustivity
is not essential in our framework because text archives often contain less important text
units as well. Text units are treated as outliers if they neither exhibit a clustering tendency
nor contain noteworthy themes. However, exhaustivity must be ensured with respect to
the truly relevant atomic concepts.

Thesaurus To facilitate the effective re-use of existing terminology collections, which
may conform to diverse standards and specifications, our notion of controlled vocabular-
ies is deliberately based on a small number of requirements. Besides simple pre-compiled
lists of tokens chosen to serve as text unit descriptors, more sophisticated controlled vo-
cabularies (e.g., taxonomies, thesauri, or ontologies; cf. Subsection 2.2.3) can be utilized
within our framework for semantic XML tagging. Given an arbitrary token, these different
types of controlled vocabularies can be used to look up the associated text unit descriptor,
if one exists. Despite the large number of possible kinds of controlled vocabularies, we
suggest using monolingual thesauri since they are a common form of vocabulary control
(Moens, 2000, p. 106) and thus widely used both in information retrieval (Baeza-Yates
and Ribeiro-Neto, 1999, pp. 170-171) and knowledge discovery (Sullivan, 2001, p. 196). In
addition, an international standard (ISO 2788, 1986) furthers the re-use and interchange-
ability of the great variety of existing, typically domain-specific thesauri (cf. Colomb,
2002, pp. 161-162).

According to ISO 2788 (1986, p. 1), thesauri indicate a priori known, generally rec-
ognized, and thus document-independent relationships between atomic concepts denoted
by terms. A thesaurus constitutes an agreed-upon indexing language that enables index-
ers to consistently summarize the subjects of documents and to select index terms by

92

4.2 Pre-Processing of Text Documents

means of determining the a posteriori, document-dependent relationships between atomic
concepts represented by terms. Our framework pursues a similar approach: Domain-
specific knowledge in the form of a priori known relationships between atomic concepts
(e.g., "statement/s:announcement" is a synonym of "announcement") is exploited dur-
ing feature selection to ultimately identify and label high-quality concepts, which occur
at the text unit level, in the pattern discovery phase. Labels of discovered concepts and
names of semantic XML tags, respectively, analogously reflect a posteriori relationships
of atomic concepts occurring in semantically similar text units. For the purposes of our
framework, thesauri are hence a suitable kind of controlled vocabulary. Thesaurus entries
can be mapped onto controlled vocabulary terms.

Table 4.8 illustrates the mapping of thesaurus entries onto DIASDEM-specific con-
trolled vocabulary terms. The left column lists thesaurus entries in ISO-2788 format,
which represent domain knowledge in the form of a priori known relationships between
atomic concepts. Firstly, the sense of homonymous terms is disambiguated by a supple-
mentary qualifying word in parentheses, like ‘statement (announcement)’. Secondly, the
abbreviations USE (i.e., use preferred term) and UF (i.e., used for non-preferred term)
indicate the equivalence relationship between terms, which are regarded as referring to
the same atomic concept. For instance, the terms ‘announcement’ and ‘statement (an-
nouncement)’ are synonyms, but only the former is a preferred indexing term. Thirdly,
different types of hierarchical relationships between atomic concepts are made explicit by
the abbreviations BT (i.e., broader term) and NT (i.e., narrower term). For example,
‘common stock’ is a specific kind of ‘stock’. The right column of Table 4.8 indicates the
controlled vocabulary terms associated with each thesaurus entry such that preferred in-
dexing terms correspond to text unit descriptors. Narrower index terms, like ‘common
stock’, are considered to be non-descriptors referencing the respective broader term.

Supporting the Domain Expert Since text unit descriptors play a key role in retaining
semantic meaning when representing textual content as vectors, codifying the relevant
archive-specific background knowledge is a pre-processing task of paramount importance.
A domain-specific controlled vocabulary can be constructed either by establishing a com-
pletely new one or preferably by re-using an existing one. To minimize the costs associated
with the interactive knowledge discovery phase, pre-compiled and thematically relevant
terminology collections should be re-used and possibly modified or extended. If this pre-
ferred option cannot be exercised, however, constructing a controlled vocabulary is by no
means confined as a manual task. For example, various techniques for topic discovery in
texts (see Subsection 2.2.1) as well as many different methods for learning taxonomies, the-
sauri, and ontologies (see Subsection 2.2.3) are easily applicable to at least semi-automate
the process of constructing a new controlled vocabulary. In addition, Korfhage (1997,
pp. 114-125) and Moens (2000, pp. 77-102) summarized applicable techniques for (semi-)
automatically selecting useful index terms.

Our framework targets domain-specific, as opposed to general, text archives. There-
fore, the terminological characteristics of sublanguages (cf. Sager, 1986) or languages for

93

4 DIAsDEM Knowledge Discovery Process

special purposes (cf. Bowker and Pearson, 2002, pp.25-27) can be exploited to relieve the
laborious task of establishing a controlled vocabulary from scratch. A sublanguage con-
siderably differs from language as a whole by specializations in syntax and the existence
of a specific vocabulary (Sager, 1986, p. 1). Thus, domain experts benefit from employing
(semi-) automated term extraction methods capable of identifying characteristic words
of specialized subject fields (Bowker and Pearson, 2002, p. 26 and pp. 165-174). For
instance, Feldman et al. (1999) described a term extraction module that identifies and
filters relevant terms in a document collection by applying both linguistic and statistical
techniques. Frequently, sublanguage terms are collocations. These multi-part tokens, like
"preferred stock", denote specific atomic concepts that are independent of the atomic
concepts represented by their components. Manning and Schiitze (1999, pp. 151-189), for
example, gave an extensive overview of helpful computer-linguistic algorithms for identi-
fying collocations in text archives.

4.2.5 Mapping Text Units onto Text Unit Vectors

After establishing a domain-specific controlled vocabulary, the pre-processing step of
our knowledge discovery process is concluded by transforming tokenized and fully pre-
processed text units into numerical text unit vectors. To that end, we adopt the vector-
space model introduced by Salton (1968, pp. 236-243) and summarized in Subsection 2.1.2.
Originally proposed to efficiently store and retrieve textual content, the vector-space model
is a widely recognized numerical text representation for knowledge discovery purposes as
well (Sullivan, 2001, pp. 328-337). In particular, many clustering algorithms, which are
frequently employed in KDT applications, require a transformation of input documents
into real-valued vectors (e.g., cf. Steinbach et al., 2000; Zhao and Karypis, 2002). Firstly,
we thus introduce framework-specific properties of text unit vectors. Secondly, different
approaches to descriptor weighting are discussed before we illustrate the mapping of text
units onto vectors using a simplified example.

Terminology In the vector-space model, pre-processed text units, each of them part of
an intermediate text unit (see Definition 18 on page 74), are represented as vectors in
a feature space whose dimensions correspond to text unit descriptors of the controlled
vocabulary established beforehand. Each vector component is referred to as a weight
that reflects the importance of the respective content identifier in the associated text unit
(cf. Salton, 1968, p. 236). A weight of zero indicates that the corresponding text unit
descriptor either does not occur in or is not applicable to the associated text unit. On the
other hand, a descriptor weight other than zero indicates that the respective descriptor
(1) occurs in the associated text unit and (ii) is weighted proportionally to the size of the
corresponding real-valued vector coefficient. Thus, our preliminary notion of text unit
vectors (see Definition 17 on page 74) is extended as follows:

Definition 28 (Text Unit Vector) Given the controlled vocabulary V: ControlledVocab-
ulary and the tokenized text unit i: TokenizedTextUnit, a text unit vector u € R" is an

94

4.2 Pre-Processing of Text Documents

n-dimensional vector such that n = V.numberOfDescriptors(). The component v; € R,
where i =1,2,...,n, of text unit vector u := [vy, Uy, ..., v,|T represents the weight of text
unit descriptor V.descriptor(i) in tokenized text unit .

According to Salton (1968, p. 236), vector components represent arbitrary document
properties. In our framework, vector space dimensions correspond to descriptor tokens
that either denote atomic concepts or named entity types. Ultimately, the vector dimen-
sionality is determined by the number of text unit descriptors in the controlled vocabu-
lary. When selecting descriptors, domain and KDT experts nevertheless have to carefully
consider any constraints on the feature space dimensionality imposed by the clustering
algorithm to be employed during pattern discovery. A text unit vector is encapsulated by
the ADT TextUnitVector (see Appendix B.25 on page 231).

Descriptor Weighting Typically, the descriptors of a domain-specific controlled vocabu-
lary are not equally useful for characterizing the content of text units (cf. Baeza-Yates and
Ribeiro-Neto, 1999, p. 24). When weighting the occurrences of descriptors in a text unit,
more important descriptors should therefore be emphasized by assigning them a higher
weight than less useful descriptors. The systematic procedure of assigning appropriate
numerical weights to descriptor occurrences in text units is commonly referred to as a
weighting scheme. Setting up a weighting scheme is neither a trivial issue nor a context-
free decision. To select a reasonable and framework-specific weighting scheme for text
unit descriptors, the objectives of our knowledge discovery process and characteristics of
typical input text archives have to be considered in particular.

In a seminal work summarizing 20 years of experimental evidence, Salton and Buckley
(1988) concluded that information retrieval performance crucially depends on the weigh-
ing scheme for content identifiers that represent documents and queries. Given an infor-
mation request expressed as a query, IR performance is improved by retrieving a larger
proportion of relevant texts (i.e., by increasing recall) and by reducing the number of mis-
takenly retrieved, irrelevant documents (i.e., by increasing precision). Consequently, term
weighting schemes in IR systems should comprise both recall- and precision-enhancing
factors. To that end, Salton and Buckley advised using composite weights that consist
of a term frequency, a collection frequency, and a normalization component. Aimed at
improving recall, the term frequency component increases the weight of content identifiers
that appear frequently in individual documents. If highly frequent terms occur in many
documents of the collection, however, term frequency by itself is not capable of ensuring
an acceptable retrieval precision. Hence, the collection frequency component increases the
weight of content identifiers that only occur in a few documents of the respective archive.
Thirdly, the normalization component corrects the term frequency bias introduced by
widely varying document lengths in the same archive.

Although our framework for semantic XML tagging pursues other objectives than ef-
fectively retrieving textual content, the thoughts on term weighting brought forward by
Salton and Buckley are nonetheless relevant. Instead of striving for retrieving relevant

95

4 DIAsDEM Knowledge Discovery Process

documents in response to information requests, we aim at discovering groups of semanti-
cally similar text units and assigning them content-descriptive labels. Consequently, the
effectiveness of the DIASDEM framework cannot be assessed by standard IR metrics like
recall (i.e., ratio of retrieved relevant texts to all relevant texts in a collection) and preci-
sion (i.e., ratio of retrieved relevant texts to all retrieved texts). Nevertheless, identifying
semantic concepts in a set of text units by means of clustering the associated vectors is
facilitated by descriptor weights that exhibit the properties outlined above. In particular,
our pattern discovery phase sets out to — literally — recall, or to find, as many concepts
at the text unit level as possible, while simultaneously ensuring the desired level of con-
cept — literally — precision, or specificity. Our framework thus necessitates a descriptor
weighting scheme that effectively supports a clear separation between text units that rep-
resent distinct semantic concepts. This implies that the best descriptors occur frequently
in a text unit, but have a low collection frequency. Since this descriptor discrimination
consideration is shared with term weighting in IR, the recommendations made by Salton
and Buckley are applicable in our knowledge discovery context as well.

Salton and Buckley (1988, p. 521) argued that the effectiveness of weighting schemes
for document vectors ultimately depends on characteristics of the respective collections.
Based on experimental evidence, Salton and Buckley recommended using different term
weighting components, depending on characteristic properties of the focal text archive. In
the DTIASDEM framework, text unit vectors are created by mapping structural text units,
which usually comprise far fewer words than entire documents, onto a lower-dimensional
feature space spanned by a controlled vocabulary. Concerning the term frequency com-
ponent in this case, the authors suggested a binary weight equal to 1 for descriptors
present in a text unit and equal to 0 for non-present descriptors. Thereby, the exact
term frequency is intentionally ignored. Regarding the collection frequency component,
Salton and Buckley generally recommended an inverse document frequency weight (cf.
Subsection 2.1.2) unless the collection is very dynamic and thus requires regular updates
of document frequencies. This exclusion criterion is not met in our context since we target
domain-specific documents of rather homogeneous content only. According to Salton and
Buckley, the normalization component is negligible if the deviation in vector length is not
large. Consequently, we omit normalizing text unit vectors as they represent structural
text units that are not assumed to vary significantly in size.

Given controlled vocabulary V: ControlledVocabulary, n € N pre-processed text units,
and m = V.numberOfDescriptors() text unit descriptors, the corresponding collection

of n text unit vectors is an (n x m) matrix U = [uj,uy, -+ ,u,]" in the vector-space
model. Rows of matrix U represent n text unit vectors and columns correspond to m text
unit descriptors. For ¢ =1,2,...,n and j = 1,2,...,m, the following framework-specific

weighting scheme for text unit descriptors reflects the considerations stated above:

In =, if tudf(z,7) > 0 and tuf(y) > 0;
ui[j]:{ntuf(ﬂ) , if tudf(é, j) and tuf(j) ; (4.1)

0 , otherwise.

96

4.2 Pre-Processing of Text Documents

Table 4.9: Text Unit Descriptors of the Controlled Vocabulary Vg and Weighting Com-
ponents for Exemplary Text Documents tg; through tgs

Jj Vg.descriptor(j) tuf(yj) In wiy Non-Descriptors Represented by Vg.descriptor(j)
1 "stock" 2 2.53 "common_stock"
2 place 7 1.27
3 "expect" 2 2.53
4 "Newsdesk" 4 1.83 '"newsdesk"
5 '"not" 3 2.12
6 "closing" 2 2.53 '"complete"
7 "disclose" 2 2.53
8 "sale" 11 0.82 "sell"
9 Munit" 12 0.73 "organization", "subsidiary"
10 "term/s:agreement" 2 2.53
11 "acquisition" 3 2.12 "acquire"
12 "agreement" 3 2.12 "agree", "definitive_agreement"
13 "announcement" 2 2.53 "statement/s:announcement"

Table 4.10: Text Unit Vectors of Intermediate Text Unit Layer tg; (cf. Table 4.3 on
Page 79 and Table 4.7 on Page 86)

up11 = [0,0,0,0,0,0,0,0.82,0.73,0,0,0,0] T ug; 2 = [0,0,0,0,0,0,0,0.82,0.73,0,0,2.12,0] T
ug; 3 = [0,0,0,0,2.12,0,2.53,0,0,2.53,0,0,0]T | ug; 4 = [0,1.27,0,1.83,0,0,0,0,0,0,0,0,0]T

In Expression 4.1, the term tudf(i,j) denotes the frequency of text unit descriptor
V.descriptor(j) in pre-processed text unit i. Furthermore, tuf(j) denotes the frequency
of text units in the collection of size n, in which V.descriptor(j) occurs at least once.
Analogous to Salton and Buckley (1988, p. 518), In ﬁ is the inverse document frequency
factor of our weighting scheme, which is referred to as inverse text unit frequency in our
framework. Denoted by w;[j], the jth component of text unit vector i represents the
weight of text unit descriptor V.descriptor(j) in text unit 1.

Unless otherwise stated, we employ the weighting scheme specified by Expression 4.1. If
the properties of input text units differ considerably from our assumptions, this weighting
scheme should be augmented by an appropriate term frequency and/or normalization
component (cf. Salton and Buckley, 1988, p. 521). However, a discussion of alternatively
applicable, but less commonly used, weighing schemes (e.g., signal-to-noise ratio or term
discrimination value; cf. Korfhage, 1997, pp. 117-122) is beyond the scope of this work.

We illustrate our descriptor weighting scheme by mapping the fully pre-processed text
unit vectors, depicted in Table 4.7 on page 86, onto vectors. Given the small controlled
vocabulary Vg: ControlledVocabulary, Table 4.9 lists all Vg.numberOfDescriptors() = 13
descriptor tokens Vg.descriptor(j), where j = 1,2,...,13. For each descriptor, Table 4.9

n

also includes the text unit frequency tuf(j) and the inverse text unit frequency In G in

97

4 DIAsDEM Knowledge Discovery Process

our exemplary archive comprising the texts tg; through tgs. For instance, the descriptor
"agreement" or its associated non-descriptors, like "agree", occur in three out of n = 25
sentences. Its inverse text unit frequency of 2.12 is higher than the inverse text unit fre-
quency of the descriptor "unit" (i.e., 0.73). This token and its associated non-descriptors
(e.g., "organization" and "subsidiary") appear in twelve sentences.

As depicted in Table 4.10, the tokenized text unit iig; 2 = (€gy2.placeholder(), "say",
"it", "agree", "to", "sell", "its", "consulting", "and", "technical", "organiza-
tion", ",", €gys.placeholder(), ",", "to", gy 4.placeholder()) is mapped onto the 13-
dimensional text unit vector ug;» = [0,0,0,0,0,0,0,0.82,0.73,0,0,2.12,0]*. Tokenized
text unit igy 2 contains zero descriptor and three non-descriptor tokens (i.e., "agree",
"sell", and "organization"). In accordance with controlled vocabulary Vg, the vector
component ug; 2[8] = 0.82 denotes the weight associated with descriptor token "sale"
whereas ug; 2[9] = 0.73 is the slightly lower weight of the frequently occuring descriptor
"unit". Vector component ug; 2[12] = 2.12 corresponds to the highly weighted descriptor
"agreement". The remaining vector coefficients are equal to 0 as the respective descrip-
tors or their associated non-descriptors do not occur in text unit tig; 2.

Effect on KDT Process Flow Creating text unit vectors brings the pre-processing phase
to an end since the resulting numerical data set is input to the pattern discovery phase
of our KDT process. Unlike the pre-processing algorithms executed beforehand, vectors
are normally created more than once because text units are iteratively segmented into
semantically similar subgroups. In iteration one, all text units are transformed into vec-
tors to initiate the clustering process. In each subsequent iteration, vectors are created
only for text units that were assigned to qualitatively unacceptable and thus semantically
unlabeled clusters in the immediately preceding clustering iteration. Since the number
of text units to be clustered decreases as the iterative pattern discovery process pro-
gresses, updated and hence iteration-specific collection frequencies of descriptors have to
be computed. Only iteration-specific descriptor weights properly reflect the change in
collection frequency statistics induced by our iterative clustering procedure that, step by
step, removes text units assigned to high-quality clusters from the input data set.

In addition to the effect of iterative clustering, weighting descriptor occurrences in
the knowledge discovery phase is different from the knowledge application phase. More
specifically, the iteration-specific collection frequency components of descriptor weights
are once computed in the interactive KDT phase and merely used in the application
phase. This approach is necessary because inverse text unit frequencies must reflect the
importance of descriptor occurrences in the training archive, which may be an intentionally
biased document sample. By contrast, the descriptor frequency components of weights,
which are binary in our framework, are not iteration-specific because they solely depend
on the descriptor frequencies in the corresponding pre-processed text units.

Since mapping text units onto vectors is closely interrelated with the iterative pattern
discovery phase, the effect on the KDT process flow is discussed in detail in Subsec-
tion 4.3.4. In addition, we elaborate on the subtle distinction between creating text unit

98

4.3 Clustering of Text Unit Vectors

vectors during knowledge discovery and knowledge application in Section 4.5.

4.3 Clustering of Text Unit Vectors

As illustrated in Figure 2.1 on page 22, the pattern discovery step follows goal setting,
text selection, text pre-processing, and text transformation in the generic process for
knowledge discovery in textual databases. To attain the specific goals of our DIASDEM
knowledge discovery process, groups of semantically similar text units have to be identi-
fied and assigned content-descriptive labels, which ultimately serve as names of semantic
XML tags enclosing the respective text units. After pre-processing, text units are repre-
sented by vectors, whose components are numerical weights of subject-specific descriptors
from a controlled vocabulary. In this section, we introduce our approach to exploratively
discovering domain-specific concepts at the text unit level. This task corresponds to find-
ing groups of similar text units in which certain combinations of atomic concepts prevail.
Once discovered, clusters of text unit vectors constitute classification knowledge, which is
exploited to semantically tag texts during knowledge application.

After giving an overview on text clustering in general, we elaborate on selecting an
appropriate clustering algorithm for the pattern discovery task at hand. Subsequently, we
discuss the DIASDEM approach to ranking clusters of text unit vectors by decreasing
quality and describe our notion of iterative clustering in detail. Although the former task
clearly involves interpreting result patterns and is thus actually different from pattern
discovery itself, the framework-specific quality assessment procedure is nevertheless dis-
cussed in this section. Undoubtedly, the distinction between qualitatively acceptable and
unacceptable clusters of text unit vectors is an integral part of iterative clustering. In con-
trast, conceptually labeling homogeneous text unit groups is a task of the post-processing
step of our KDT process and is therefore introduced in the next section.

4.3.1 Clustering Textual Data: An Overview

This subsection summarizes relevant aspects of clustering text by introducing the building
blocks of unsupervised learning. Firstly, we outline the core idea of clustering textual
data. Secondly, the fundamental concepts of text similarity and dissimilarity are discussed
before we present a high-level categorization of existent clustering algorithms. Finally, we
concisely survey relevant issues in assessing the validity of clustering results.

The Notion of Clustering According to Kaufman and Rousseeuw (1990, p. 1), cluster-
ing is “the art of finding groups in data.” The aim of cluster analysis is to identify groups,
or clusters, of objects in a data set that exhibit the following characteristics: Objects in
the same cluster are very similar, but objects assigned to different clusters are as dissimilar
as possible. Analogously, Han and Kamber (2006, pp. 383-384) referred to the activity “of
grouping a set of physical or abstract objects into classes of similar objects” as clustering.

99

4 DIAsDEM Knowledge Discovery Process

The authors stressed that many research disciplines (e.g., statistics and machine learning)
have contributed towards the improvement of clustering techniques. Han and Kamber
emphasized the wide range of possible application areas for cluster analysis that include
pattern recognition, biological studies, image processing, and marketing. Clustering text-
ual data is an important technique, which is often applied, for instance, in information
retrieval (cf. Rasmussen, 1992; Wu et al., 2004), Web content mining (cf. Chakrabarti,
2003, pp. 79-123), or topic discovery (cf. Subsection 2.2.1).

Jain et al. (1999, p. 264) introduced clustering as “the unsupervised classification of pat-
terns (observations, data items, or feature vectors) into groups (clusters).” This definition
places particular emphasis on the distinction between cluster analysis as an unsupervised
learning method and classification as supervised learning. Unlike classification, clustering
requires neither pre-defined classes nor class-labeled training objects, but instead strives
for the explorative discovery of unknown classes in data sets. Nevertheless, the close link
between clustering and classification becomes apparent if the former technique is used to
discover initial categories in a data set, which are afterwards assigned to new objects by
means of classification (Vazirgiannis et al., 2003, p. 20).

Bringing together the components of a clustering task discussed by Jain et al. (1999,
pp. 266-268) and the generic clustering process described by Vazirgiannis et al. (2003,
pp. 20-21), a typical clustering process consists of the following five steps:

1. Representing objects involves choosing the objects to be clustered, as well as select-
ing, pre-processing existing, and possibly creating new features that appropriately
represent objects. This initial step must ensure the proper encoding of information
about objects, which is likely to be relevant for the clustering task at hand.

2. Defining an object proximity measure refers to selecting a suitable measure to quan-
tify the (dis-) similarity between usually pairs of objects, which are represented by
the features chosen beforehand. Since the notion of (dis-) similarity is fundamental
in clustering, the proximity measure must be appropriate to the data domain.

3. Grouping objects can be performed in a number of different ways. Hence, a suitable
algorithm has to be chosen, parameterized, and executed. In particular, knowledge
discovery experts take into account a priori expectations about the characteristics of
clusters that are likely to occur in the data set. Selecting an algorithm corresponds
above all to choosing a proper clustering criterion (e.g., minimization of a cost
function) that determines how groups of similar objects are formed in detail.

4. Concisely describing clusters, also referred to as data abstraction, is the optional
step of creating a simple and compact description of all discovered clusters. For
example, identified clusters may be visualized by representative objects to facilitate
the interpretation of clustering results by human beings.

5. Assessing cluster validity corresponds to validating the resulting clusters by using
appropriate criteria and techniques. Various approaches to cluster validity analysis
set out to distinguish ‘good’ clustering results from ‘poor’ ones. To that end, ob-
jective criteria are applied to determine whether output clusters are meaningful in

100

4.3 Clustering of Text Unit Vectors

the sense that they are unlikely to have occurred by chance or as an artifact of the
algorithm.

In the DIASDEM framework for semantic XML tagging, the clustering task is em-
bedded into a knowledge discovery process as the text mining step. Consequently, the
first component of the generic clustering task (i.e., representing objects) corresponds to
selecting, pre-processing, and transforming text within our KDT process. As part of the
actual pattern discovery step, a proximity measure and an algorithm are chosen prior to
grouping text unit vectors. As explained above, the validity of resulting text unit vector
clusters is assessed in each iteration of our iterative clustering approach.

In the remainder of this subsection, we focus on relevant proximity measures, concisely
categorize major clustering algorithms, and briefly survey important cluster validity con-
cepts. In particular, we deliberately restrict the discussion to grouping objects repre-
sented by numerical vectors of ratio-scaled features without missing values and the need
to normalize the ranges of features (e.g., cf. Jain and Dubes, 1988, p. 13, pp. 19-20,
and pp. 23-25). This restriction is motivated by the corresponding characteristics of text
unit vectors to be grouped in our knowledge discovery process. They solely comprise
ratio-scaled descriptor weights without missing values because a weight of zero indicates
a non-present descriptor. The varying ranges of vector components do not have to be
normalized since they represent purposefully chosen descriptor weights measured on the
same ‘scale’ of importance. On the contrary, any range normalization, which may be
required by certain clustering algorithms, has to preserve the relative differences between
weights of more and less important descriptors.

Similarity and Dissimilarity Algorithmically assigning similar objects to the same clus-
ter and dissimilar objects to distinct clusters necessitates a suitable notion of proximity.
Everitt et al. (2001, p. 35) emphasized that identifying clusters in data sets requires knowl-
edge about how ‘close’ two objects are to each other or how ‘far apart’ they are. Thus,
most clustering algorithms assume a numerical measure, or index, of object proximity
that solely depends on the values of encoded features (Jain et al., 1999, p. 271).

The proximity between pairs of documents can either be determined directly (e.g.,
by asking human beings to judge the perceived proximity between any two texts) or
indirectly by computing the value of a numerical proximity measure for each pair of
encoded document features (cf. Everitt et al., 2001, p. 35). Since the former approach
is not feasible when processing large-scale text archives, we limit our discussion to the
indirect measurement of document proximity. Adopting the information retrieval vector-
space model (cf. Subsection 2.1.2 on page 23), let t = [r,72,...,T,] denote® an m-
dimensional property vector representing a text document such that m € N, |[t|| # 0,

6Notation: Let x = [£1,&2,...,&m|Y and y = [191, 72, . . ., 7] T denote two m-dimensional column vectors,
where x,y € R™ and m € N. The scalar product of vectors x and y is denoted by x-y = >." | & - n;.
The Euclidean norm of vector x is denoted by ||x|| = (3, £2)1/2.

101

4 DIAsDEM Knowledge Discovery Process

Table 4.11: Common Proximity Measures between Two Text Documents Represented by
m-Dimensional Property Vectors t; and to

Proximity Measure Definition
Cosine similarity simeos(t1, t2) = t1 - t2 / [[t1]] - [[t2]] € [0;1]
Euclidean distance distgpuc(t1,t2) = [[t1 — t2]| >0

Extended Jaccard similarity — simpyjac(ti, t2) = t1-t2 / (|[t1]]? + [[t2]|? — t1 - t2) € [0;1]

and 7; > 0 for i = 1,2,...,m. Furthermore, let T = [t1,ts, - ,t,]T denote an (n x m)
matrix, which represents a text collection and comprises n € N property vectors.

A proximity measure is either a similarity or a dissimilarity. The more two objects
resemble each other, the larger a similarity index and the smaller a dissimilarity index
(Jain and Dubes, 1988, p. 11). For i = 1,2,...,n and j = 1,2,...,n, let prox(t;,t;)
denote a proximity index between two property vectors in T. According to Jain and
Dubes (1988, pp. 14-15), proximity indices must satisfy the following three properties:

1. (a) For a dissimilarity, the dissimilarity of any property vector to itself equals zero:
prox(t;,t;) =0 V.
(b) For a similarity, the similarity of any property vector to itself is not less than
the similarity of any other property vectors: prox(t;,t;) > max; prox(t;,t;) Vi.

2. Proximity indices are symmetric: prox(t;,t;) = prox(t;, t;) V,j.

3. Proximities are non-negative numbers: prox(t;, t;) >0 Vi,j.

Henceforth, we distinguish similarity indices, which are denoted by sim(t;,t;), from
dissimilarity indices denoted by dis(t;,t;). A dissimilarity measure is termed metric or
distance measure, which is denoted by dist(t;,t;), if it fulfills the triangular inequality
dist(t;, t;) < dist(t;, ty) +dist(tg, t;) Vi,7,k, where k =1,2,...,n, and satisfies the con-
dition dist(t;,t;) = 0 — t; = t; (Jain and Dubes, 1988, pp. 14-15). Measuring distances
between objects in a geometric sense is often much more intuitive than using a similarity
index (Grabmeier and Rudolph, 2002, p. 312). A distance index can be transformed into
a similarity index by various methods, such as sim(t;, t;) := exp(—dist(t;, t;)).

Table 4.11 contains a list of three proximity measures for property vectors, which are
often discussed in the context of text clustering for knowledge discovery (e.g., cf. Ghosh
and Strehl, 2006, pp. 78-79). The cosine similarity, however, constitutes “the classi-
cal information retrieval approach to comparing documents” (Weiss et al., 2005, p. 91).
Following extensive usage in conjunction with the seminal SMART information retrieval
system (Salton, 1968, p. 238), the cosine similarity has become a widely used proximity
measure for textual data in both IR (Grossman and Frieder, 2004, p. 18) and knowledge
discovery (Feldman and Sanger, 2007, p. 85). simces(t1, t2) is defined as the cosine of the
angle between property vectors t; and t,. As the angle between two identical vectors is
0°, their cosine similarity equals 1. The cosine similarity between two orthogonal vectors

102

4.3 Clustering of Text Unit Vectors

equals 0 since the angle between them is 90°. The cosine similarity takes values in [0; 1]
due to the non-negative property of vector components in the vector-space model.

Han and Kamber (2006, p. 388) noticed that the Euclidean distance is “the most popu-
lar distance measure” for objects described by interval-scaled features. distgye(t1,t2) >0
is defined as the geometric distance of the property vectors t; and t, in the multi-
dimensional vector space. This metric is a special case (i.e., A = 2) of the Minkowski
metric distying (A, t1,t2) = O i |71 — 75.:")Y*, where A > 1. The Euclidean distance
assumes some degree of commensurability between the different features of property vec-
tors, which is typically accomplished by standardization of variables (cf. Hand et al., 2001,
pp. 32-36). In the vector-space model, however, this assumption is always satisfied since
all descriptor weights are measured on the same ‘scale’ of importance.

The extended Jaccard similarity is termed in accordance with Ghosh and Strehl (2006,
p. 79). Salton (1989, p. 319) and Rasmussen (1992, p. 422), for instance, recommended
SiMpxtJac(t, to) for usage in document clustering because it is simple and outputs normal-
ized similarity values in [0; 1] when the components of property vectors are non-negative.
For binary property vectors, this similarity measure equals the ratio of the number of
features assuming the value 1 in both t; and t, to the number of features assuming the
value 1 in t; or to. Thereby, the similarity index is computed without taking the typ-
ically large number of features assuming the value 0 in both vectors into consideration.
SiMpggac(t1, t2) extends this notion of similarity to the vector-space model.

Comparing proximity measures in detail is beyond the scope of this work. Ghosh and
Strehl (2006, p. 80) argued that distg,.(t1,ts) is translation-invariant and scale-variant
whereas simgs(t1,t2) is scale-invariant and translation-variant. By means of geometric
analysis (cf. Jones and Furnas, 1987), Ghosh and Strehl showed that simpytjac(ti, t2) has
aspects of both other proximity measures. Having conducted experiments on the impact
of similarity measures on clustering text, Ghosh and Strehl concluded that the cosine
and the extended Jaccard similarity are best in capturing human categorization behavior.
In contrast, the Euclidean distance is not appropriate for high-dimensional, sparse data
sets. Choosing a similarity measure for a specific application “is not prescribed by any
theoretical considerations,” summarized Salton (1989, p. 319), but is rather “left to the
user.” This statement apparently holds (cf. Everitt et al., 2001, pp. 52-53).

Categorization of Clustering Algorithms Since unsupervised learning is an important
technique in a variety of domains, a huge number of clustering algorithms have been
proposed in the last decades (e.g., cf. Hartigan, 1975; Jain and Dubes, 1988; Kaufman
and Rousseeuw, 1990; Everitt et al., 2001; Wu et al., 2004). To categorize this variety of
methods, several taxonomies of clustering approaches were promoted. For instance, Jain
et al. (1999, p. 275), Grabmeier and Rudolph (2002, p. 340), Jain et al. (2004, p. 261),
and Berkhin (2006) classified the most important clustering algorithms in slightly different
ways. Reviewing the entire literature on categorizing clustering techniques is beyond the
scope of this work. However, we concisely introduce the following five major categories,
which are selected in accordance with Vazirgiannis et al. (2003, pp. 23-42) as well as Han

103

4 DIAsDEM Knowledge Discovery Process

and Kamber (2006, pp. 398-401):

e Partitioning algorithms decompose the entire data set into exactly one set of dis-
joint clusters such that each object belongs to one cluster (e.g., see Everitt et al.,
2001, pp. 90-118). Typically, partitioning methods, such as the commonly used
k-means algorithm (MacQueen, 1967), create an initial partitioning of objects and
subsequently either minimize or maximize an algorithm-specific clustering criterion
by iteratively re-assigning objects to clusters. To avoid an exhaustive enumeration
of all possible solutions, most partitioning algorithms adopt heuristics.

e Hierarchical algorithms create a tree-like decomposition of the data set into several
nested sets of clusters (e.g., see Everitt et al., 2001, pp. 55-89). These clustering
methods are either agglomerative or divisive. The former take a bottom-up approach
by successively merging individual objects or clusters into larger clusters. Divisive,
or top-down, methods initially assign all objects to one cluster and successively
create smaller clusters by splitting larger ones. Hierarchical algorithms require a
stopping criterion if exactly one ‘optimal’ set of clusters is desired.

e Density-based algorithms enable the discovery of arbitrarily shaped clusters and the
detection of outliers (e.g., see Han and Kamber, 2006, pp. 418-424). Informally, the
density of an object’s neighborhood with a given radius is defined as the number of
objects contained therein. Most partitioning algorithms are based on the distance
between objects and thus work well for finding only spherical clusters. In contrast,
density-based algorithms regard clusters as highly dense, contiguous regions of ob-
jects. Clusters are separated by regions of lower density comprising only noise.

e ('rid-based algorithms initially quantize the feature space into a finite number of
multi-dimensional cells. This data structure is a spatial index of the typically large
and high-dimensional data set, which allows for a coarse, yet efficient, clustering
(e.g., see Han and Kamber, 2006, pp. 424-429). Instead of grouping input objects,
all clustering operations are performed on the quantized feature space. Thus, the
processing time of most grid-based methods is independent of the object number,
but rather depends on the smaller number of cells in each feature space dimension.

e Model-based algorithms attempt to learn generative mathematical models from the
data such that each model represents one particular cluster (Zhong and Ghosh,
2003, pp. 1001-1002). These methods often assume the input data to be generated
by a mixture of probability distributions. Typically, the model type is specified
a priori whereas the model structure and its parameters have to be determined and
estimated, respectively. Han and Kamber (2006, pp. 429-434) outlined a statistical,
a machine learning, and a neural network approach to model-based clustering.

Without doubt, many algorithms adopt ideas from several categories (Han and Kamber,
2006, p. 400). Self-Organizing Maps (cf. Kohonen, 2001) are, for example, constructed
by partitioning and model-based clustering algorithms (Zhong and Ghosh, 2003, p. 1003).
Furthermore, Jain et al. (1999, pp. 274-275) introduced five additional categorization cri-
teria for clustering algorithms that may effect all methods regardless of their belonging

104

4.3 Clustering of Text Unit Vectors

to the major categories. For instance, the hard vs. fuzzy criterion refers to the number
of clusters that each input object can be assigned to. Hard, or so-called crisp, meth-
ods allocate each object to exactly one cluster while fuzzy algorithms assign degrees of
membership in several clusters to objects (cf. Vazirgiannis et al., 2003, p. 24).

In the context of thematically grouping text documents, the distinction between hi-
erarchical and non-hierarchical methods is often considered the primary dichotomy. For
instance, Salton (1989, pp. 326-341), Rasmussen (1992, pp. 425-427), as well as Manning
and Schiitze (1999, pp. 495-528) used this top-level criterion to survey clustering algo-
rithms for textual data. Manning and Schiitze emphasized that hierarchical methods are
preferable for detailed analysis because a document hierarchy conveys more information
than a single document partition. Non-hierarchical algorithms should be favored when
processing large collections or if efficiency is a decisive issue. Referring to Steinbach et al.
(2000), however, Grossman and Frieder (2004, p. 107) noticed that hierarchical methods
do not necessarily outperform other methods with respect to cluster quality.

Cluster Validity Assessment Hand et al. (2001, p. 295) stressed that in general the
“validity of a clustering is often in the eye of the beholder.” Quantifying cluster validity,
the authors continued, “is difficult, if not impossible, since the interpretation of how
interesting a clustering is will inevitably be application-dependent and subjective to some
degree.” Analogously, Silberschatz and Tuzhilin (1996) emphasized the fundamental role
of two subjective measures of interestingness (i.e., unexpectedness and actionability) in
assessing knowledge discovery results. Furthermore, He et al. (2004, pp. 112-113) raised
awareness of the inherent subjectivity when quantitatively measuring cluster quality.

Although the important human influence on quality assessment is recognized, the terms
cluster validation and cluster validity assessment, respectively, denote the process of quan-
titatively and objectively evaluating the results of cluster analysis (cf. Jain and Dubes,
1988, pp. 143-160). To ensure objectivity, Jain and Dubes based their validation frame-
work on the premise that problems of cluster validity are inherently statistical. More
specifically, a clustering is valid if it is statistically unusual in some objectively defined
sense. Proposing cluster validity indices is easy whereas selecting appropriate index
thresholds to distinguish usual from unusual clusterings is difficult and thus requires a
sound statistical approach (i.e., hypothesis testing or Monte Carlo analysis).

Indices of cluster validity measure the adequacy of a clustering in an objectively in-
terpretable way (Jain and Dubes, 1988, pp. 160-165). More specifically, a clustering is
adequate if it provides true information about the data set or reflects the intrinsic char-
acter of the data. Jain and Dubes as well as Vazirgiannis et al. (cf. 2003, pp. 95-96)
distinguished the following three types of cluster validity indices:

e FKrternal indices evaluate the result against a priori specified, external information
(e.g., thematic labels) that reflects the truly existing clusters in the data set.

e Internal indices assess the adequacy of a clustering by utilizing only the data set
itself and internally derived information, such as the proximity matrix.

105

4 DIAsDEM Knowledge Discovery Process

Table 4.12: Five Relative Cluster Validity Indices

Cluster Validity Index Range Objective

Original Dunn index (e.g., cf. Vazirgiannis et al., 2003, pp. 104-105)) Maximize!

00
Davies-Bouldin index (e.g., cf. Vazirgiannis et al., 2003, pp. 105-106) ;00) Minimize!

[0
[0
Average silhouette width (Kaufman and Rousseeuw, 1990, pp. 83-88) [—
[0
[0

1;1] Maximize!
SDbw index (e.g., cf. Vazirgiannis et al., 2003, pp. 113-115) ;2] Minimize!
Overall cluster quality index (He et al., 2004, pp. 114-116) ;1] Minimize!

e Relative indices allow for the comparison between different clusterings of the same
data set. In particular, the most likely number of clusters in the data and the optimal
parameters for a given algorithm, respectively, can be determined by relative criteria
(cf. Milligan and Cooper, 1985; Vazirgiannis et al., 2003, pp. 102-103).

In this work, we focus on relative validity indices for two reasons. Unlike benchmark
studies that compare clustering algorithms on the basis of pre-classified document col-
lections (e.g., Steinbach et al., 2000), our DIASDEM framework does not assume the
existence of test archives marked up at the text unit level. In contrast to both external
and internal criteria with high computational demands, relative clustering criteria typi-
cally require fewer computations and do not involve statistical tests (Vazirgiannis et al.,
2003, p. 102). Table 4.12 lists five commonly used relative indices applicable for crisp
algorithms, which represent different approaches to relative cluster validity assessment.
Elaborating on their intricacies, however, is beyond the scope of this work.

Most relative criteria compare intra-cluster similarity, which is often referred to as clus-
ter compactness or cohesion, and inter-cluster similarity, the so-called cluster separation.
Each specific validity index nevertheless takes an individual approach to actually defining
a valid clustering. For example, the original Dunn index aims at identifying compact, well-
separated, and spherical clusters in a geometrical sense. However, this index is “overly
sensitive to noisy clusters” (Bezdek and Pal, 1998, p. 301). To reduce the effect of outliers
present in the data, Bezdek and Pal thus proposed several generalizations of this index.
The SDbw index, for instance, takes the density of regions between clusters into consid-
eration when assessing cluster separation. Finally, the overall cluster quality index is a
weighted, additive combination of cluster compactness and separation.

Determining the number of clusters in a data set is one of the most difficult decisions to
be made in cluster analysis (Everitt et al., 2001, p. 179). In this context, several authors
successfully applied cluster validity criteria in empirical experiments (e.g., cf. Vesanto
and Alhoniemi, 2000; Steinbach et al., 2000; Stein et al., 2003). Vesanto and Alhoniemi
(2000, p. 593) concluded that “in practice, though, it is better to use the index values
as a guideline rather than absolute truth.” Although Jain and Dubes (1988, pp. 143-
201) and Vazirgiannis et al. (2003, pp. 93-121) presented a detailed overview of cluster

106

4.3 Clustering of Text Unit Vectors

validity assessment, the authors (perhaps intentionally) avoided giving any advice on how
to select an appropriate validity index. In addition, Estivill-Castro (2002, p. 71) confirmed
the application-dependency of cluster quality by stressing that validity “depends on the
data set where a claim of existence of structure us made.” Given the large number of
available validity indices, a KDT expert apparently has no choice, but to employ several
of them when conducting a cluster analysis in a new domain.

4.3.2 Selecting a Clustering Algorithm

In Subsection 2.1.1, we have stressed that knowledge discovery strives to find new, pre-
viously unknown patterns in data. Facing the vast and continuously growing literature
on clustering methods, researchers and practitioners alike have to bear in mind that dif-
ferent algorithms are effective in identifying different kinds of clusters (Hand et al., 2001,
pp. 295-296). Stein and Meyer zu Eissen (2003, p. 257), for instance, characterized sev-
eral algorithms with respect to geometrical properties of the recognized clusters. Since
clustering is above all employed to discover unexpected structures in data, Hand et al.
simultaneously warned of imposing too many preconceptions on the analysis.

Consequently, selecting appropriate clustering algorithms for usage in the DIASDEM
knowledge discovery process is of paramount importance. In this subsection, we initially
describe criteria for choosing clustering algorithms suitable for application in our frame-
work. Thereafter, we outline three adequate clustering algorithms.

Selection Criteria According to Everitt et al. (2001, p. 179), choosing an appropriate
clustering method requires considering issues in algorithm design to ensure an effective
discovery of the suspected types of clusters. In addition, suitable clustering algorithms
must be “insensitive to error” and “available in software.” Although these suggestions are
fairly general and assume a priori knowledge of cluster properties, Everitt et al. (2001,
p. 178) provided hints concerning the general applicability of methods depending on the
types of attributes occurring in the input data. For example, Self-Organizing Maps (cf.
Kohonen, 2001) are considered useful for large data sets of objects described by continuous
features. Analogously, Kaufman and Rousseeuw (1990, pp. 50-52) suggested choosing
algorithms primarily based on the measurement scale of object features.

Although most clustering applications pose individual requirements, Han and Kamber
(2006, pp. 385-386) identified nine typical ones. These generic requirements stand as
potential selection criteria for choosing clustering methods in our knowledge discovery
process. Two of them, the ability to deal with different types of attributes and constraint-
based clustering, are not relevant in our framework. Text unit vectors have real-valued
components only (see Definition 28 on page 94), and there are no additional application-
specific constraints that need to be satisfied. The ability to find clusters of arbitrary
shape is possibly relevant, but properties of clusters to be discovered are often likely to
be unknown in advance. Minimizing the domain knowledge necessary to determine input
parameters is only partially relevant as we explicitly incorporate domain knowledge any-

107

4 DIAsDEM Knowledge Discovery Process

way (cf. Subsection 4.2.4). The effective handling of high-dimensional data sets is another
partially relevant requirement. Despite employing a controlled vocabulary when mapping
text units onto vectors (cf. Subsection 4.2.5), the resulting, typically 100- through 300-
dimensional vectors are neither low- nor particularly high-dimensional. In our context, it
is finally desirable, rather than strictly required, that clustering algorithms are insensitive
to the order of input text unit vectors.

Three generic requirements for clustering algorithms proposed by Han and Kamber
(2006, pp. 385-386) are particularly relevant in our KDT process. Firstly, the method
has to be highly scalable with respect to the number of text unit vectors because training
archives may be very large. Secondly, the ability to deal with noisy data is relevant
since we cannot assume real-world archives to comprise solely text units that exhibit a
clustering tendency. Thirdly, the clustering results (i.e., groups of text unit vectors) must
be interpretable, comprehensible, and usable to distinguish qualitatively acceptable from
unacceptable clusters (cf. Section 3.3).

If specific requirements are addressed at all, authors presenting the application of clus-
tering techniques in information retrieval or knowledge discovery in textual databases
mostly focus on requirements similar to those outlined by Han and Kamber (2006, pp. 385
386). For example, Zamir et al. (1997) discussed two domain-specific requirements in
addition to constraints concerning the scalability of the clustering algorithm. Wen et al.
(2001) searched for a clustering algorithm satisfying one application-specific requirement
as well as two generic ones: scalability and minimal needs of domain knowledge to deter-
mine input parameters of the algorithm. Furthermore, Hotho et al. (2003a, pp. 138-139)
elaborated on requirements concerning the high-dimensionality of textual data sets as well
as the interpretability and subjectivity of clustering results.

Clustering algorithms to be employed within the DIASDEM framework should comply
with the following six main requirements, which are ordered by decreasing importance:

1. Ability to deal with real-valued features: Our notion of text unit vectors (see Defini-
tion 28 on page 94) entails this fundamental, compulsory requirement.

2. Ability to execute in application mode: The second compulsory requirement is im-
posed by the two-phase DIASDEM framework (cf. Chapter 3). A domain-specific
KDT process flow is interactively parameterized in the knowledge discovery phase.
Subsequently, this process flow is automatically executed in the knowledge applica-
tion phase. More specifically, new text documents are automatically tagged in the
second phase by utilizing classification knowledge acquired in phase one. There-
fore, adequate clustering methods must provide an application mode in which new
text unit vectors are assigned to previously discovered clusters (e.g., centroid-based
classification; cf. Weiss et al., 2005, pp. 113-114).

3. Interpretability and usability: Basically, algorithms must be available in software
to be usable. Our notion of interpretability corresponds to distinguishing qualita-
tively acceptable clusters of text unit vectors from unacceptable ones. Concretely,
clustering results must be output in a form that enables the application of our

108

4.3 Clustering of Text Unit Vectors

DIAsDEM-specific cluster quality criteria. To meet this compulsory requirement,
text unit vectors may, for instance, be assigned the cluster identifiers.

4. Ability to deal with noisy data: Although we assume a clustering tendency at the text
unit level in training and application archives (cf. Section 3.2), it is not reasonable
to assume noise-free data sets. In our context, noise corresponds to text unit vectors
that represent text units featuring rarely occurring subjects, topics, or themes. Since
noisy text units are not semantically marked up at best, the clustering algorithm
should be capable of treating their respective vectors accordingly.

5. Scalability: Furthermore, adequate algorithms should be highly scalable to efficiently
process training archives comprising a large number of text units. Thereby, the need
to perform cluster analysis based on random, often relatively small samples of text
unit vectors should be eliminated to the greatest extent possible.

6. Proven track of KDT applications: Finally, our less important requirements shall be
covered by this proxy, but neither necessary nor sufficient, criterion. This includes
the ability to find arbitrarily shaped clusters, the minimization of required knowledge
to determine parameters, as well as challenges related to the dimensionality and
sparsity of input data. Hence, algorithms are assumed to be appropriate for our
framework if they were successfully used for clustering textual data.

Having established six criteria for the framework-specific selection of adequate clustering
methods, the “user’s dilemma” (Dubes and Jain, 1976, p. 247) of finally choosing a specific
algorithm still remains to be solved. Unfortunately, it is highly likely that several existing
clustering algorithms fulfill our requirements. In a similar context, Dubes and Jain (1976,
p. 247) stressed that searching for a single ‘best’ clustering technique “would be fruitless
and contrary to the very nature of clustering.” Due to the exploratory, rather than
confirmatory, character of cluster analysis (cf. Estivill-Castro, 2002, p. 71), this somewhat
pragmatic argument is widely supported. For example, Kaufman and Rousseeuw (1990,
p. 37), Rasmussen (1992, p. 436), and Everitt et al. (2001, p. 177) emphasized that it
is usually advisable to employ multiple clustering algorithms in combination with cluster
validation methods capable of checking the reliability of the results.

In the remainder of this subsection, we characterize three clustering techniques that
satisfy most requirements for usage in the DIASDEM framework: the bisecting k-means
algorithm (Steinbach et al., 2000), one algorithm based on the Self-Organizing Map
paradigm (i.e., BATCH MaAP; Kohonen, 2001, pp. 139-140), and a method taking a shared
nearest neighbor approach (i.e., SNN Clustering; Ertoz et al., 2004). Our selection is of
course debatable, but it reflects three distinct approaches to clustering textual data. Ta-
ble 4.13 provides a qualitative summary of these three algorithms by focusing on the
fulfillment of our six selection criteria.

Bisecting k-Means The bisecting k-means algorithm (Steinbach et al., 2000) extends
the k-means algorithm (MacQueen, 1967) or, more precisely, the large family of related
methods (cf. Everitt et al., 2001, p. 100). The standard k-means algorithm is a partitioning

109

4 DIAsDEM Knowledge Discovery Process

Table 4.13: Summary of Three Proposed Clustering Algorithms w.r.t. the Fulfillment of
DIASDEM-Specific Selection Criteria

Requirement Bisecting k-Means BATcH MAP SNN Clustering
Ability to deal with real-valued features yes yes yes
Ability to execute in application mode yes yes yes
Interpretability and usability yes yes yes
Ability to deal with noisy data no no yes
Scalability yes yes no
Proven track of KDT applications yes yes yes

clustering method, which groups the input data set into an a priori specified number of
clusters (i.e., the clustering). Each cluster is represented by one centroid defined as the
mean vector of all vectors assigned to the respective cluster. Given a distance measure, the
desired number of clusters £ € N, and a data set comprising n vectors x; € R™ (n,m € N,
n>k,and i =1,2,...,n), the standard k-means algorithm is defined as follows (cf. Han
and Kamber, 2006, p. 403):

1. Select k arbitrary (e.g., randomly chosen) vectors as the initial centroids.

2. For each vector, find the nearest centroid and assign the vector to its cluster.
3. For each cluster, compute the centroid.

4. Unless the assignment of vectors to clusters does not change, go to step 2.

Steinbach et al. (2000) as well as Han and Kamber (2006, p. 403) referred to the above
method as the k-means algorithm. Strictly speaking, however, it is the so-called Forgy’s
algorithm (see Forgy, 1965; Gose et al., 1996, pp. 211-213). MacQueen without a doubt
coined the term k-means, but simultaneously referred to Forgy (1965) as an iterative,
“two-step improvement procedure” (MacQueen, 1967, p. 294). Unlike Forgy’s algorithm,
the original k-means method incrementally recomputes the centroids and performs only
two passes through the data set (see MacQueen, 1967; Gose et al., 1996, pp. 213-215).

As the standard k-means minimizes the squared distances between vectors and their
centroids, it is only capable of discovering convex clusters of approximately equal size
(Han and Kamber, 2006, pp. 403—404). When heuristically minimizing the total sum of
squared distances, k-means often converges to a local, instead of a global, minimum. The
validity of the resulting clustering thus depends on the initial centroids (Berkhin, 2006,
p. 41). To alleviate this negative effect, k-means is typically executed multiple times with
different initializations. The final clustering is chosen based on an appropriate cluster
validity criterion. Moreover, the standard k-means is very sensitive to noise, but it can
be augmented to detect outliers (e.g., cf. Larsen and Aone, 1999, p. 18).

The bisecting k-means algorithm requires the same input as the standard k-means and
encompasses the following steps (cf. Steinbach et al., 2000; Savaresi et al., 2002):

110

4.3 Clustering of Text Unit Vectors

1. The initial clustering consists of one cluster that represents the entire data set.

2. Selection step: Arbitrarily choose one cluster, for instance the largest, to be split.

3. Bisecting step: Execute the standard k-means algorithm to find two sub-clusters of
the selected cluster and remove the selected cluster from the clustering.

4. Unless the clustering consists of k clusters, go to step 2.

Clearly, the bisecting k-means method combines elements of both partitioning (i.e., the
bisecting step) and divisive hierarchical clustering (i.e., the selection step). This algo-
rithm shares many characteristics of the standard k-means: discovery of convex clusters,
sensitivity to noise, and the importance of initial centroids. Consequently, Steinbach et al.
(2000) suggested executing the bisecting step multiple times and selecting the ‘best’ split
based on cluster validity. According to Steinbach et al., the bisecting k-means has a time
complexity that is linear in the number of input vectors and can therefore be considered
scalable. In addition, this algorithm is executable in application mode using a centroid-
based classifier (cf. Weiss et al., 2005, pp. 113-114). After performing exactly the same
data pre-processing steps as in the knowledge discovery phase, a new vector is assigned
to the cluster that is represented by the nearest centroid. Finally, the generated mapping
of input vectors onto cluster identifiers can be easily interpreted and used to compute our
DIASDEM cluster quality criteria.

Having conducted a large-scale experiment in comparing document clustering tech-
niques, Steinbach et al. (2000) concluded that the bisecting k-means algorithm outper-
forms the standard k-means. More surprisingly, this technique performed as good as,
or even better than, several agglomerative hierarchical clustering methods. In addition,
Dhillon and Modha (2001), Zhao and Karypis (2006), as well as Yoo and Hu (2006), for
example, successfully deployed the bisecting k-means algorithm to cluster textual data.

Batch Map Introduced by Kohonen (1993, pp. 1149-1150) as a very fast algorithm,
BAaTcH MAP belongs to the large family of Self-Organizing Map (SOM; cf. Kohonen,
2001) algorithms. Before discussing BATCH MAP, we therefore concisely outline relevant
properties of the basic SOM algorithm (cf. Kohonen, 2001, pp. 105-115).

Conceived by Teuvo Kohonen in 1982, the original SOM algorithm maps a high-
dimensional input space onto a low-dimensional output space, which is usually a two-
dimensional grid referred to as the map. In particular, the “SOM thereby compresses
information while preserving the most important topological and /or metric relationships”
of the input vectors (Kohonen, 2001, p. 106). In the two-dimensional case, the resulting
map consists of units that are arranged as an ordered, mostly rectangular or hexagonal
array. The topological neighborhood of a map unit encompasses, for example, all units in
the array that are positioned within a certain radius around the focal unit. Given n € N
input vectors x; € R™, where i = 1,2,...,n and m € N, each of £ € N units is associated
with one reference vector m; € R™, where j = 1,2, ..., k. Each reference vector, referred
to as a generalized median by Kohonen, fully represents input vectors assigned to its unit
and partially represents input vectors that are assigned to other units in the topological

111

4 DIAsDEM Knowledge Discovery Process

neighborhood of its unit. Hence, the SOM algorithm is effective in both visualizing and
clustering high-dimensional data based on topological similarity.

Elaborating on the intricacies of training a Self-Organizing Map is beyond the scope
of this work. It is noteworthy, however, that the SOM is a competitive-learning neural-
network algorithm (Kohonen, 1993, p. 1147). During the learning phase, all topologically
connected reference vectors are initialized and thereafter incrementally adjusted such that
the grid “adaptively assumes a form by which it best describes the input vectors in an
ordered, structured fashion.” The entire learning process is highly parameterizable to
adequately define, for instance, the shape and size of the topological neighborhood.

Given a proximity measure, the properties of the desired result map (i.e., its form and
the number of map units & € N), a definition of the topological neighborhood, and a
data set comprising n vectors x; € R™ as specified above, the BATCH MAP algorithm is
defined as follows (cf. Kohonen, 1993, p. 1150):

1. Select k arbitrary (e.g., randomly chosen) vectors as initial reference vectors.

2. For each map unit j = 1,2,...,k, collect a list of input vectors whose nearest
reference vector belongs to the topological neighborhood of map unit j.

3. For each map unit j, the new reference vector m; is the mean vector of all input
vectors assigned to the respective list of map unit j created in step 2.

4. Go to step 2 “a few times.”

Kohonen (1993, p. 1150) emphasized that BATCH MAP resembles the standard k-means
algorithm outlined above. Unlike the standard k-means, however, it imposes a topological
order onto the final clustering. In particular, Kohonen suggested starting with a larger
topological neighborhood and gradually decreasing its size during the iterative learning
process. In the last iterations, the neighborhood of map unit j may even solely contain the
unit j to ensure stable reference vectors. In this case, the final iterations are equivalent
to the standard k-means algorithm.

The BATCH MAP algorithm is able to deal with real-valued features and capable of
executing in application mode. Similar to the bisecting k-means and its centroid-based
classifier described above, BATCH MAP allows for utilizing a classifier based on the near-
est reference vector of new input vectors. Analogous to the bisecting k-means, the results
output by BATCH MAP can easily be processed to apply the DIASDEM cluster quality
criteria. Due to the topological ordering of map units in a two-dimensional array, the in-
terpretability is undoubtedly improved because the graphical result map facilitates deeper
insights into the discovered classification knowledge. Like the bisecting k-means, BATCH
MAP is also sensitive to noisy input vectors per se, but this algorithm can be extended to
deal with outliers (e.g., cf. Larsen and Aone, 1999, p. 18).

According to Vesanto and Alhoniemi (2000, p. 589), the standard SOM scales linearly
with the number of input vectors and quadratically with the number of map units. Hence,
training huge maps can be very time consuming. However, Kohonen (2001, p. 312) noticed
that BATCH MAP “has the advantage of being approximately an order of magnitude faster
than the standard SOM.” Since we do not strive to train especially huge maps, BATCH

112

4.3 Clustering of Text Unit Vectors

MAP is thus considered scalable for our KDT process. In addition, the standard SOM
algorithm and BATCH MAP were frequently employed to cluster textual data. Using both
algorithms, Kohonen (2001, pp. 296-299) processed 6,840,568 English patent abstracts to
construct a map comprising 1,002,240 units. Schweighofer et al. (2001), Rauber and Merkl
(2003), Chen et al. (2003), and Lagus et al. (2004) presented other relevant applications
of the Self-Organizing Map.

SNN Clustering Ertoz et al. (2003, 2004) proposed a novel clustering technique capable
of finding clusters of different sizes, shapes, and densities in high-dimensional, noisy data
sets. Since this method is based on the shared nearest neighbor clustering algorithm
presented by Jarvis and Patrick (1973), we briefly motivate the concept of shared nearest
neighbors and outline the fundamental algorithm. Thereafter, we introduce the new
approach to shared nearest neighbor, or abbreviated SNN, clustering.

Ertoz et al. (2003) argued that the commonly used proximity measures introduced in
Subsection 4.3.1 do not work well in high-dimensional, sparse data sets representing, for
example, text documents. On average, the similarity between any two vectors in these
kinds of data sets is typically low. Beyer et al. (1999) explored the effect of dimensionality
on the nearest neighbor problem. As the dimensionality increases, Beyer et al. showed
that the distance from any vector to its nearest vector approaches the distance to its
farthest vector under a broad set of conditions. This effect may occur for as few as 10—
15 dimensions. Using a well-known text classification archive and the cosine similarity,
Ertoz et al. (2004, p. 88) demonstrated that “a document’s closest neighbor actually
belongs to a different class 20% of the time.” To alleviate the problems associated with
direct proximity computations, Ertoz et al. (2003) advocated the concept of shared nearest
neighbors. More specifically, the similarity between any two vectors is defined on the basis
of nearest neighbors shared by them. If two vectors have many common nearest neighbors,
the similarity between them is ‘confirmed’ and thus more ‘reliable’ than directly computed
proximity indices.

Jarvis and Patrick (1973, pp. 1026-1027) proposed a shared nearest neighbor approach
to discovering non-globular clusters. Given a proximity measure, the size of the nearest
neighbor list £ € N, a similarity threshold k; € N, k; < k, and a data set comprising
n vectors x; € R™ (n,m € N, n > k, and i = 1,2,...,n), this clustering algorithm
starts by determining the k nearest neighbors for each vector. Subsequently, two vectors
are assigned to the same cluster if (i) they are contained in each other’s list of k nearest
neighbors and (ii) have at least k; nearest neighbors in common. The first condition avoids
combining a small, relatively isolated group of vectors with a highly dense cluster.

To overcome a few limitations (see Ertoz et al., 2004, p. 89), the authors extended the
Jarvis-Patrick method and proposed a novel SNN clustering algorithm. This technique
utilizes the shared nearest neighbor approach to effectively process high-dimensional data
sets and additionally uses representative vectors, so-called topic points, to find clusters of
differing sizes and shapes. Given a proximity measure, the data set specified above, the
size of the nearest neighbor list £ € N, and five parameters described below, the SNN

113

4 DIAsDEM Knowledge Discovery Process

clustering algorithm is defined as follows (Ertoz et al., 2004, pp. 89-90):

1. Determine the list of k& nearest neighbors for each vector ¢+ = 1,2,...,n. Each
document is considered to be its 0" nearest neighbor.

2. Construct the shared nearest neighbor graph whose vertices represent vectors. This
graph has an edge between two vertices if the corresponding vectors have each
other in their nearest neighbor list. Each edge is annotated with the so-called link
strength defined as the number of nearest neighbors shared by the two vectors,
which correspond to the connected vertices. An edge is labeled ‘strong link’ if its
link strength is greater than a user-supplied strong link threshold tgiongrink € N,
where tStrongLink < k+1.

3. For each vector i, compute the connectivity conn(i) that is defined as the number
of strong links connected with the vertice of vector 7 in the SNN graph.

4. Discard each vector i as noise assigned to a specific outlier cluster if conn(i) < txoise,
where tnoise € N < m is a user-specified threshold. Outliers are not considered in
the clustering because they are similar to only a few of their neighbors.

5. Label each vector i as a representative vector if conn(i) > trpic, where tropic € N is
a parameter such that fnoise < tropic < n. Representative vectors, or topic points,
are similar to most of their neighbors and thus represent the neighborhood.

6. Assign any two vectors to the same cluster if (i) at least one vector is a representative
vector and (ii) they share a significant number of nearest neighbors. The second
condition requires that the link strength between the vertices that correspond to
the respective vectors in the SNN graph is greater than the user-supplied threshold
tMerge € N7 where tStrongLink < tMerge <k + 1.

7. Finally, consider non-noise vectors not assigned to any cluster yet: Assign these
vectors to the respective clusters if their associated vertices in the SNN graph are
connected to vertices of vectors assigned to a cluster with a link strength greater
than the user-supplied threshold frapeiing € N, Where tsironglink < tLabeling < tMerge-

According to Ertoz et al. (2004, p. 90), this clustering algorithm is capable of discovering
“communities of documents, where a document in a community shares a certain fraction of
its neighbors with at least some number of neighbors.” The clustering method is based on
the idea that the probability of a document belonging to a different thematic class than its
nearest neighbor decreases as these two documents share an increasing number of common
neighbors. Ultimately, Ertoz et al. designed the new SNN clustering technique to find
topics occurring in text archives. Since the authors successfully conducted experiments
on real-world text collections, SNN clustering has a proven track of KDT applications.
Nevertheless, selecting appropriate parameters requires considerable expertise (e.g., the
size of nearest neighbor list; see Ertoz et al., 2004, pp. 90-91).

This method is able to process real-valued vectors and outputs results that are easily
interpretable and usable within the DIASDEM framework. Unlike the other two algo-
rithms, SNN clustering is capable of dealing with noisy data. In contrast to the methods
introduced previously, however, SNN clustering cannot be considered highly scalable with

114

4.3 Clustering of Text Unit Vectors

respect to the size of the training data set. The run-time complexity of this clustering
algorithm scales quadratically with the number of input vectors because the similarity
matrix has to be computed to determine the nearest neighbor list for each vector (cf.
Ertoz et al., 2003). However, Ertoz et al. discussed several optimizations to process large
data sets efficiently. Finally, SNN clustering can be executed in application mode by
employing a k-nearest-neighbor classifier (cf. Weiss et al., 2005, pp. 88-89).

4.3.3 Ranking Clusters of Text Unit Vectors

Separating qualitatively acceptable clusters of text unit vectors from unacceptable ones
is a core step in our knowledge discovery process (cf. Section 3.3). When retrieving
information from an archive, ranking refers to sorting the result documents by decreasing
relevancy to present the most relevant texts on top of the often large result list (e.g.,
cf. Frakes and Baeza-Yates, 1992, pp. 363-392). In the DIASDEM framework, however,
ranking denotes the process of sorting clusters of text unit vectors by decreasing quality.
Before we elaborate on our concept of iterative clustering, we therefore motivate and
introduce the fundamental DIASDEM cluster quality criteria in this subsection.

Our Notion of Cluster Quality As discussed in Subsection 4.3.1, there exists a large
number of different relative cluster validity indices designed to assess the validity of a
clustering, which is the entirety of clusters output by an algorithm. Some of them, for
example the average silhouette width (Kaufman and Rousseeuw, 1990, pp. 83-88), are
also capable of evaluating the validity of individual clusters. Nevertheless, we intentionally
propose a novel, framework-specific set of cluster quality criteria for two purposes:

e Above all, the objectives of our DIASDEM framework (cf. Section 3.2) impose
conditions on the quality of text unit clusters. By employing a specific knowledge
discovery approach, we strive to discover clusters that (i) represent semantic con-
cepts frequently occurring at the text unit level and that (ii) later serve as names
of semantic XML tags. Our main goal entails specific characteristics of qualita-
tively acceptable, or valid, clusters. These framework-specific properties, which are
described in detail below, cannot be guaranteed by generic cluster validity indices.

e In addition, the pattern discovery step of our KDT process adopts a plug-in ap-
proach and thus allows for the execution of various clustering algorithms if they
fulfill our selection criteria. As outlined in Subsection 4.3.1, however, the effectivity
of cluster validity assessment strongly depends on the appropriateness of assump-
tions underlying the applied criteria (e.g., convex clusters of similar sizes). Hence,
choosing a generic validity index is hardly appropriate for separating acceptable
from unacceptable clusters of text unit vectors in an algorithm-independent way.

To linguistically distinguish our framework-specific criteria from generic validity indices,
we intentionally use the term cluster quality criteria instead of cluster validity criteria. All

115

4 DIAsDEM Knowledge Discovery Process

Table 4.14: Sentences Assigned to Qualitatively Acceptable Text Unit Cluster 4 in Iter-
ation 1 (cf. News Items in Table 4.1 on Page 72)

Sentence of Reuters News Item Item Text Sentence
USA: VASCO says to sell consulting unit. 16106 tg; 1
USA: Weyerhaeuser may sell subsidiary. 71177 tgz 1

Timber giant Weyerhaeuser Company said Monday it may sell its mortgage 71177 tgs 2
loan subsidiary, the Weyerhaeuser Mortgage Company.

USA: Miller to sell unit to Modtech. 78899 tga 1
USA: Helmerich to sell unit to Occidental. 17109 tge 2
USA: Zurn sells unit to Constellation Capitol. 115995 tgs 1
Zurn Industries Inc said on Tuesday that it will sell its Zurn Mechanical 115995 ftgs 2

Power Transmission Group to Constellation Capital Partners LLC, for an
undisclosed amount.

automatically created suggestions concerning the quality of each cluster (i.e., acceptable
or unacceptable), which can later be approved or rejected by the domain expert, solely
depend on the DIASDEM cluster quality criteria. Nevertheless, we explicitly encour-
age using appropriate relative cluster validity indices to find the optimal parameters of
the respective clustering method (e.g., number of clusters). This approach corresponds
to the ‘best practice’ of employing several relative validity indices when fine-tuning the
parameters of clustering algorithms (cf. Subsection 4.3.1).

What exactly characterizes a ‘good’ and thus qualitatively acceptable cluster of text unit
vectors? To achieve the objectives of our DIASDEM framework, qualitatively acceptable
text unit clusters exhibit the following two characteristics:

1. An acceptable cluster represents only one coherent semantic concept. The corre-
sponding text units are assumed to feature a relatively homogeneous topic if their
content can be described by clearly predominating text unit descriptors that occur
in almost all text units assigned to the respective cluster.

2. An acceptable cluster comprises a sufficient, relatively large number of text unit
vectors. This requirement facilitates the discovery of frequently occurring and thus
more important semantic concepts at the text unit level. However, the concretely
required minimum cluster size depends on both the domain and the archive.

Since ‘good’ clusters are semi-automatically assigned content-descriptive labels in the
post-processing phase, the desired properties of qualitatively acceptable clusters are di-
rectly related to the purpose of their semantic labels. Cluster labels eventually serve as
names of semantic XML tags and elements of the domain-specific, concept-based XML
document type definition, respectively. As specified in Definition 1 on page 7, names of

116

4.3 Clustering of Text Unit Vectors

Table 4.15: Sentences Assigned to Qualitatively Unacceptable, Inhomogeneous Text Unit
Cluster 7 in Iteration 1 (cf. News Items in Table 4.1 on Page 72)

Sentence of Reuters News Item Item Text Sentence
Terms were not disclosed. 16106 tg; 3
— Chicago newsdesk 312 408-8787 17109 tgo 5
Terms were not disclosed. 78899 tpa 4
Chicago Newsdesk 312-408-8787 78899 tgy 5
—Chicago Newsdesk 312-408-8787 16106 tg; 4
— New York Newsdesk +1 212 859 1610 115995 tgs 5

Table 4.16: Sentence Assigned to Qualitatively Unacceptable, Small Text Unit Cluster 0
in Iteration 1 (cf. News Items in Table 4.1 on Page 72)

Sentence of Reuters News Item Item Text Sentence

Final settlement is scheduled for October 21, Miller said. 78899 tpy 3

semantic XML tags convey the meaning of marked-up content by concisely describing
concepts that domain experts typically associate with annotated text units. The first
condition contributes towards semantically correct markup because only clusters repre-
senting homogeneous text units with clearly predominating descriptors are considered
acceptable. The second condition concerning the size of acceptable clusters ensures the
discovery of frequently recurring thematic concepts at the text unit level, which is one
goal of our framework (cf. Section 1.4). Ignoring infrequent concepts contributes towards
the effective usage of semantic markup in the form of concept-based XML DTD elements.

Prior to formalizing our notion of cluster quality, we illustrate it using the exemplary
text archive comprising five news stories tg; through tgs, which altogether consists of
25 sentences (cf. Table 4.1 on page 72). For illustrative purposes, we refrain from dis-
cussing pre-processing issues (see Section 4.2), but emphasize that sentences correspond
to text units. Executing the bisecting k-means algorithm to discover £ = 8 sentence clus-
ters in clustering iteration 1 returned, among others, three clusters listed in Tables 4.14
through 4.16. Visualized in Table 4.14, cluster 4 is qualitatively acceptable because it
represents one semantic concept at the sentence level (i.e., the theme ‘sale of business
unit’) and it is relatively large (i.e., seven of 25 sentences). Although containing six sen-
tences, cluster 7 shown in Table 4.15 is not acceptable since it lacks one coherent semantic
concept. T'wo of six sentences feature a different subject than the remaining ones. Since
cluster 0, which is visualized in Table 4.16, comprises merely one sentence, it is too small
and cannot be considered qualitatively acceptable as well.

117

4 DIAsDEM Knowledge Discovery Process

DIAsDEM Cluster Quality Criteria Within our knowledge discovery process, conven-
tional clustering algorithms satisfying certain requirements are employed to find clusters
of text unit vectors, which are in turn an integral part of intermediate text units (cf. Defi-
nition 18 on page 74). The details of our iterative approach to clustering are described in
the next subsection. At this point, we nevertheless anticipate that executing a clustering
algorithm results in modified iteration identifiers and cluster identifiers of the input inter-
mediate text units. To simplify the subsequent discussion, we define text unit clusters as
multi-sets” of intermediate text units:

Definition 29 (Text Unit Cluster) Given intermediate text archive a: IntTextArchive
and cluster identifier i € N in clustering iteration t € N, the multi-set Cy; := {{u | @ Int-
TextUnit := a.intTextUnit(j, k;) Vj =1,2,..., asize() Vk; = 1,2,...,aintTextUnit-
LayerSize(j) s.t. t.iteration() = ¢ and u.cluster() = i}} is a text unit cluster comprising all
intermediate text units in a, whose text unit vectors are assigned to cluster i in clustering
iteration t.

Since archives may comprise duplicate intermediate text units, text unit clusters are
defined as multi-sets instead of sets. Text unit clusters may be empty, but each interme-
diate text unit in the corresponding archive is assigned to one text unit cluster at most.
One text unit cluster is encapsulated by the abstract data type TextUnitCluster (see
Appendix B.32 on page 236). The entirety of text unit clusters discovered in the same
clustering iteration constitute a text unit clustering, whose instances are encapsulated by
the ADT TextUnitClustering (see Appendix B.33 on page 238).

Definition 30 (Text Unit Clustering) Given intermediate text archive a: IntTextArchive
and mazimum cluster identifier .. € N in clustering iteration t € N, the set C; :=
{Ci1,Cra, ..., Crinun b 15 a text unit clustering comprising all iyq, text unit clusters Cy;:
TextUnitCluster, where 1 = 1,2, ..., imaz, discovered by a clustering algorithm in cluster-
g teration t.

Our quality criteria can only exploit characteristics of text unit clusters that are avail-
able in any case because they are independent of the concretely applied algorithm. Thus,
we deliberately limit the components of quality criteria and merely consider occurrences
of text unit descriptors in clusters and cluster sizes. In particular, our framework-specific
notion of descriptor support within a cluster is of great importance.

Definition 31 (Descriptor Support) Let C,;: TextUnitCluster denote text unit cluster
1 € N in clustering iteration t € N. Let vp: ControlledVocabularyTerm denote a text unit

"Notation: Let the set X denote an arbitrary domain. A non-empty, finite multi-set Y := {{y1, 2, - .,
yi}}+ is a collection comprising ¢ € N unordered, not necessarily distinct elements y1,ys,...,y; such
that y; € X, where j = 1,2,...,4. Analogous to sets, the number of elements in multi-set Y (i.e., its
cardinality) is denoted by |Y| € N, and an empty multi-set is denoted by 0, such that || = 0. Unlike
sets, however, multi-sets may comprise duplicate elements.

118

4.3 Clustering of Text Unit Vectors

descriptor such that vp.isDescriptor() = true. The descriptor support Cy,;.descriptorSup-
port(vp) of text unit descriptor vp in non-empty text unit cluster Cy; is defined as the
ratio of the number of intermediate text units in Cy; whose processed text unit contains
the token vp.token() to the total number of intermediate text units in Cy,;. If text unit
cluster Cy; is empty, Cy;.descriptorSupport(vp) is defined to be zero.

A more formal, multi-set-based definition of descriptor support is given in the specifi-
cation of the ADT TextUnitCluster in Appendix B.32. Descriptor support takes values
in [0;1]. The term descriptor support is inspired by the support of association rules in
a data set (cf. Agrawal et al., 1993, p. 208). Unlike the notion of support in association
rule discovery, however, the support of text unit descriptors is always cluster-specific.
The greater the fraction of intermediate text units in a cluster that comprise a certain
descriptor, the higher its support within the respective cluster. A text unit descriptor,
whose support is not very large in a cluster, is likely to be less significant for the purpose
of semantically describing the respective cluster content, and vice versa.

Considering the exemplary controlled vocabulary listed in Table 4.9 on page 97, text unit
descriptor ("unit", 9, true, null), which also represents the two non-descriptors ("organi-
zation", 20, false, 9) and ("subsidiary", 23, false, 9), occurs in six of seven text units as-
signed to the acceptable text unit cluster 4, which is shown in Table 4.14 on page 116, and
thus exhibits a high descriptor support of 6/7 therein. The descriptor ("stock", 1, true,
null) does not appear in any sentence and thus has the minimum support of 0 in clus-
ter 4. In the qualitatively unacceptable text unit cluster 7, as shown in Table 4.15 on
page 117, the descriptor ("unit", 9, true, null) occurs in two of six text units and has thus
a moderate support of 1/3 therein.

To assess the quality of text unit clusters for the ultimate purpose of semantic tagging,
highly supported descriptors are favored over less supported ones. In addition, noisy
descriptor occurrences are neglected to avoid a high influence of outliers onto the assess-
ment of cluster quality. To incorporate these requirements into the quality evaluation, we
introduce dominant and rare text unit descriptors defined as follows:

Definition 32 (Dominant Descriptor) Let C,;: TextUnitCluster denote text unit cluster
1 € N an clustering iteration t € N. Text unit descriptor vp: ControlledVocabularyTerm,
where vp.isDescriptor() = true, is a dominant descriptor in text unit cluster Cy; if its sup-
port Cy;.descriptorSupport(vp) in Cy; is greater than or equals the user-supplied dominant
descriptor threshold ppp € [0;1].

Definition 33 (Rare Descriptor) Let C;;: TextUnitCluster denote text unit cluster i €
N in clustering iteration t € N. Text unit descriptor vp: ControlledVocabularyTerm,
where vp.isDescriptor() = true, is a rare descriptor in text unit cluster Cy; if its support
C; ;.descriptorSupport(vp) in Cy; is less than or equals the user-supplied rare descriptor
threshold prp € [0;1].

The ADT TextUnitCluster provides two operations that check whether a given text
unit descriptor is dominant and rare, respectively. It must be stressed that choosing

119

4 DIAsDEM Knowledge Discovery Process

appropriate parameter values for ppp and prp depends on the application domain and
on characteristics of the text archive. For typical domain-specific document collections,
appropriate settings are prp € [0.005;0.020] and ppp € [0.80; 0.95] such that prp < ppp.
For the exemplary controlled vocabulary listed in Table 4.9 on page 97, ppp = 0.80, and
prp = 0.01, the acceptable text unit cluster 4, which is shown in Table 4.14, contains
only dominant descriptors, namely, ("sale",8, true,null) occurring in all sentences of
this cluster and ("unit",9, true, null) exhibiting a high descriptor support of 6/7 therein.
Other text unit descriptors do not appear in sentences assigned to this text unit cluster.
Our example text archive is too small to illustrate rarely supported descriptors.

Having specified dominant and rare descriptors, we proceed by defining three proper-
ties of text unit clusters that are the building blocks of our DIASDEM quality criteria.
As mentioned above, a qualitatively acceptable cluster represents one coherent seman-
tic concept and contains a sufficient, relatively large number of text units. The former
requirement is satisfied by putting constraints on both descriptor coverage and descrip-
tor dominance whereas the latter requirement is solely related to the cluster size. These
framework-specific characteristics of text unit clusters remain to be introduced:

Definition 34 (Descriptor Coverage) Let C,;: TextUnitCluster denote text unit cluster
1 € N in clustering iteration t € N, and let V: ControlledVocabulary denote a controlled
vocabulary, where V.numberOfDescriptors() > 0. Given a user-supplied rare descriptor
threshold prp € [0; 1], the descriptor coverage Cy;.descriptorCoverage(V, prp) of text unit
cluster Cy; 1s the ratio of the number of distinct, non-rare descriptors occurring in inter-
mediate text units of Cy; to the total number of text unit descriptors in V.

Descriptor coverage measures the proportion of text unit descriptors in the controlled
vocabulary that is covered by, or occurs in, text units assigned to a specific cluster. How-
ever, only non-rare descriptors that have a descriptor support greater than the specified
rare descriptor threshold are taken into account to eliminate a possible bias introduced by
outliers. Qualitatively acceptable clusters tend to have a lower descriptor coverage than
unacceptable ones because they feature only one semantic theme. Text unit clusters with
a very high descriptor coverage are more likely to be less useful ‘garbage clusters’ that
comprise text units featuring a variety of different themes.

Definition 35 (Descriptor Dominance) Let C;;: TextUnitCluster denote text unit clus-
ter i € N in clustering iteration t € N, and let V: ControlledVocabulary denote a con-
trolled vocabulary, where V.numberOfDescriptors() > 0. Given a user-supplied dominant
descriptor threshold ppp € [0;1] and a rare descriptor threshold prp € [0;1], the descrip-
tor dominance Cy;.descriptorDominance(V, prp, ppp) of text unit cluster Cy; is the ratio
of the number of distinct, dominant descriptors occurring in intermediate text units of
Cyi to the number of distinct, non-rare descriptors occurring in intermediate text units of
Cy,i if Cy;.descriptorCoverage(V, prp) > 0. Otherwise, the descriptor dominance of Cy;
1s defined to be zero.

120

4.3 Clustering of Text Unit Vectors

The content of qualitatively acceptable clusters can be described by a few predominating
text unit descriptors. To this end, descriptor dominance measures the proportion of
dominant descriptors within one cluster. Again, rare descriptors are not considered at all
when computing the descriptor dominance of a text unit cluster. The quality of text unit
clusters increases as their respective descriptor dominance increases. Since the content of
qualitatively acceptable clusters is characterized by clearly dominating descriptors, they
tend to have a higher descriptor dominance than unacceptable clusters.

Definition 36 (Cluster Size) Let C;;: TextUnitCluster denote text unit cluster i € N in
clustering iteration t € N. The cluster size Cy;.size() of text unit cluster Cy; is the total
number of intermediate text units assigned to Cy ;.

The size of text unit clusters, which is occasionally referred to as cluster cardinality,
cannot be neglected because qualitatively acceptable clusters represent frequently occur-
ring, more ‘important’ semantic concepts. Therefore, qualitatively acceptable clusters
must be large enough to represent frequently featured subjects of the application domain.
Nevertheless, less frequently occurring topics of great importance have to be discovered as
well without putting too much emphasis on topical outliers. In general, a greater cluster
size is preferred over a smaller one when discovering semantic concepts.

After introducing three fundamental characteristics of text unit clusters separately, we
finally bring them together and define our notion of cluster quality:

Definition 37 (Qualitatively Acceptable Cluster) Let C,;: TextUnitCluster denote text
unit cluster i € N in clustering iteration t € N, and let V: ControlledVocabulary denote
a controlled vocabulary, where V.numberOfDescriptors() > 0. Given the user-supplied

dominant descriptor threshold ppp € [0;1],

rare descriptor threshold prp € [0;1], where prp < ppp,
mazximum descriptor coverage pmaxpc € [0;1],

minimum descriptor dominance pmimpp € [0; 1], and
minimum cluster size puincs € N,

text unit cluster Cy; is qualitatively acceptable if

1. Cy;.descriptorCoverage(V, prp) < PmaxDC;
2. Cy;.descriptorDominance(V, prp, PpD) = PminbdD, and
3. Cy;.51ze() > Pmincs-

Together, the DIASDEM cluster quality criteria 1 and 2 facilitate the discovery of
homogeneous clusters that represent only one semantic concept. In addition, DIASDEM
cluster quality criterion 3 ensures that acceptable clusters are sufficiently large. By com-
bining three criteria, we put our notion of cluster quality into practice. Besides the
dominant and the rare descriptor threshold introduced above, three additional parameter

121

4 DIAsDEM Knowledge Discovery Process

thresholds have to be carefully chosen by the KDT expert. We recognize that setting ap-
propriate values for maximum descriptor coverage, minimum descriptor dominance, and
minimum cluster size requires adequate domain insight. However, the apparent diver-
sity of existing application domains and text archives necessitates our parameter-based
definition of cluster quality.

Any text unit cluster that does not meet these three criteria is referred to as a qual-
itatively unacceptable cluster. The abstract data type TextUnitCluster provides an op-
eration that determines whether the instantiated cluster is qualitatively acceptable. For
notational convenience, the abstract data type ClusterQualityCriteria (see Appendix B.36
on page 241) encapsulates all five DIASDEM cluster quality thresholds introduced in
Definition 37. Although Definition 37 enables a clear distinction between acceptable and
unacceptable clusters, it does not support the ranking of text unit clusters by decreasing
quality. Since a ranking facilitates the cluster inspection by domain experts, we addition-
ally define a real-valued quality index that can be computed for all clusters.

Definition 38 (Cluster Quality Index) Let C,;: TextUnitCluster denote text unit clus-
ter i € N in clustering iteration t € N, which is an element of the text unit cluster-
ing C;: TextUnitClustering, where Cp.numberOflntTextUnits() > 0, and let V: Con-
trolledVocabulary denote a controlled vocabulary. Given a user-supplied dominant de-
scriptor threshold ppp € [0;1] and a rare descriptor threshold prp € [0;1], the cluster
quality index Cy;.qualitylndex(V, prp, pop, Ci) of text unit cluster Cy; is defined as

1/3 - (1 — C;;.descriptorCoverage(V, prp)) +
1/3 - Cy;.descriptorDominance(V, prp, pop) +
1/3 - Cy;.size()/Cy.numberOfInt Text Units()

if Cyi.descriptorCoverage(V, wprp) > 0. Otherwise, the cluster quality index is defined
as 1/3 - Cy;.size()/Cr.numberOfInt Text Units().

The operation numberOfIntTextUnits() of ADT TextUnitClustering returns the total
number of intermediate text units contained in the entire clustering. It is required to com-
pute the relative, [0; 1]-bound size of a cluster within its text unit clustering. Our cluster
quality index takes values in [0; 1] such that greater values indicate a higher cluster quality,
and vice versa. In accordance with our notion of cluster quality, this index is positively
correlated with descriptor dominance and relative size of the cluster. Furthermore, it is
negatively correlated with descriptor coverage of the respective cluster.

Finding semantically homogeneous clusters that feature exactly one concept can be
trivially achieved by assigning each text unit to its own cluster. Conversely, the largest
cluster to be discovered comprises all text units. To offset the disadvantages associated
with these limit cases, our cluster quality index gives equal weight to the individual effects
of all three criteria. Thereby, we intentionally favor homogeneity of clusters, which is
measured by descriptor dominance and descriptor coverage, over cluster size. Combining
three criteria measured on different scales, however, entails limitations on interpreting

122

4.3 Clustering of Text Unit Vectors

Table 4.17: Text Unit Descriptors Occurring in Qualitatively Acceptable Text Unit Clus-
ter 4 in Iteration 1 (cf. Table 4.14 on Page 116)

Text Unit Descriptor Descriptor Support ‘ Text Unit Descriptor Descriptor Support

"sale" 7/7 = 1.000 | "unit" 6/7 ~ 0.857

Table 4.18: Text Unit Descriptors Occurring in Qualitatively Unacceptable, Inhomoge-
neous Text Unit Cluster 7 in Iteration 1 (cf. Table 4.15 on Page 117)

Text Unit Descriptor ~ Descriptor Support ‘ Text Unit Descriptor Descriptor Support
place 4/6 ~ 0.667 "Newsdesk" 4/6 ~ 0.667
"not" 2/6 ~ 0.333 "disclose" 2/6 ~ 0.333
"term/s:agreement" 2/6 ~ 0.333

concrete index values. Nevertheless, our cluster quality index allows for the comparison
of different text unit clusters with respect to their quality.

In Subsection 4.3.1, we have emphasized the importance of relative cluster validity
indices for comparing different clusterings of the same data set. To facilitate, for example,
searching for the optimal number of text unit clusters in a data set, we finally introduce
a relative cluster quality criterion at the text unit clustering level.

Definition 39 (Clustering Quality Index) Let C,;: TextUnitClustering denote text unit
clustering in clustering iteration t € N, where C;.numberOfIntTextUnits() > 0 and
tmaz € N 18 the maximum cluster identifier, and let V: ControlledVocabulary denote a
controlled vocabulary. Given the user-supplied dominant descriptor threshold ppp € [0; 1]
and rare descriptor threshold prp € [0;1], the quality index Cy.qualityIndex(V, prp, ppp)
of text unit clustering Cy is defined as 1/C;numberOfIntTextUnits() - 375" Cy ;.size() -
Cy;.qualitylndex(V, prp, pop, Ct).

Taking values in the interval [0;1], our clustering quality index equals the weighted
average quality index of its text unit clusters. Since a greater value indicates a higher
average cluster quality, this relative cluster quality index can be used to compare clus-
terings created by different algorithms and/or different parameters. However, comparing
different values of our clustering quality index is only meaningful if they all characterize
a text unit clustering that has been discovered (i) in the same intermediate text archive,
(ii) in the identical KDT process iteration, and (iii) by employing the same controlled
vocabulary. The ADT TextUnitClustering provides an operation that returns the quality
index of instantiated text unit clusterings.

Tables 4.17 through 4.19 illustrate our concept of cluster quality by again referring to
the small example text archive and its text unit clustering in iteration 1. In particu-
lar, Table 4.17 and Table 4.18 list all text unit descriptors that occur in the focal text

123

4 DIAsDEM Knowledge Discovery Process

Table 4.19: Text Unit Clustering after Executing the Bisecting 8-Means in Iteration 1

Cluster Cluster Quality Qualitatively Descriptor Descriptor Cluster See
Rank Number Index Acceptable? Coverage Dominance Size Table(s)

1 4 0.709 Yes 2/13x0.154 2/2 = 1.000 7 4.14, 4.17
2 6 0.629 No 2/13~0.154 2/2 =1.000 1
3 5 0.603 No 3/13~0.231 3/3 =1.000 1
4 1 0577 No 4/13 ~0.308 4/4 = 1.000 1
5 2 0.338 No 5/13~0.385 1/5 = 0.200 5
6 3 0.296 No 3/13~0.231 0/3 = 0.000 3
7 7 0.285 No 5/13~0.385 0/5 = 0.000 6 4.15,4.18
8 0 0013 No 0/13=0.000 (0/0) 0.000 1 4.16

unit cluster along with their cluster-specific descriptor support. The unacceptable, small
cluster visualized in Table 4.16 does not comprise any descriptor at all. The complete
text unit clustering obtained by executing the bisecting k-means algorithm is illustrated
in Table 4.19. All eight text unit clusters are ranked by decreasing quality index. For
each cluster, the cluster quality criteria are listed along with automatically generated
cluster quality decisions. This text unit clustering contains only one acceptable and seven
unacceptable text unit clusters based on the following thresholds: dominant descriptor
threshold ppp = 0.8, rare descriptor threshold prp = 0.01, maximum descriptor coverage
Pmacpc = 0.4, minimum descriptor dominance ppipp = 0.6, and minimum cluster size
Pmincs = 4. Cluster 7, shown in Tables 4.15 and 4.18, for example, has a high descriptor
coverage of approx. 38.5% and none of its five appearing descriptors is dominant, which
results in the minimum descriptor coverage of zero. Due to its low quality index of 0.285,
this unacceptable cluster is ranked second worst in the first clustering iteration.

4.3.4 lterative Clustering of Text Unit Vectors

As coarsely outlined in Section 3.3, a clustering algorithm is repeatedly invoked during the
DIASDEM knowledge discovery process. Combined with our framework-specific cluster
quality criteria to distinguish acceptable from unacceptable clusters, this approach to
pattern discovery is referred to as iterative clustering. In the remainder of this subsection,
we explain the concept of iterative clustering in detail, give an illustrative example, and
describe the effect of iterative clustering on the KDT process flow.

Our Notion of Iterative Clustering The ‘grouping objects’ step of the typical clustering
process introduced in Subsection 4.3.1 aims at finding clusters that make explicit the valid
structure inherent in the data. Despite the common practice of exploratively executing
several algorithms and/or using different parameters to find the ‘best’ clustering, the
finally selected combination of clustering method and its parameters is typically executed
only once. In most domains it is sufficient to directly find one clustering of the entire

124

4.3 Clustering of Text Unit Vectors

input data set, such as a market segmentation or a taxonomy of astronomical objects.
Instead of pursuing this conventional approach to clustering, we advocate applying a
slightly different procedure, which we refer to as iterative clustering, for two reasons:

e The DIASDEM knowledge discovery process shall discover both specific and general
concepts that occur in the training archive. To that end, we need to find text unit
clusters that represent semantic concepts as specific as possible, without missing
more general concepts at the same time. Ultimately, semantic XML markup shall
characterize the annotated content properly and as precisely as possible.

e Our framework-specific KDT process shall discover more frequent as well as less
frequent semantic concepts as long as a domain-specific minimum frequency of oc-
currence is satisfied. In particular, less frequently appearing themes shall not be
suppressed by more frequent ones because they may also convey important topics.

The framework-specific notion of iterative clustering is designed to meet the above men-
tioned requirements in conjunction with our DIASDEM cluster quality criteria. Unlike
internal iterations performed by several clustering algorithms prior to converging towards
the final result (e.g., bisecting k-means; cf. Subsection 4.3.2), we advocate performing
clustering iterations outside the employed algorithm. To that end, a clustering algorithm,
but not necessarily the same one across all iterations, is repeatedly executed with reduced
input data, modified parameters, and/or cluster quality criteria.

Figure 4.2 highlights all components of the DIASDEM knowledge discovery process
that are associated with our notion of iterative clustering. Each clustering iteration con-
sists of the following three mandatory steps 1 through 3 and the optional step 4:

1. Mapping text units onto text unit vectors: Although converting fully pre-processed
text units into real-valued vectors is clearly a data pre-processing step, it is never-
theless an important component of our iterative clustering approach. In iteration 1,
all text units in the training archive are mapped onto text unit vectors, as described
in Subsection 4.2.5. Subsequent to the initial clustering iteration, only text units as-
signed to qualitatively unacceptable clusters in the preceding iteration are mapped
onto vectors. Due to this selective mapping, the number of text unit vectors to be
clustered is typically reduced in each iteration.

2. Selecting, parameterizing, and executing a clustering algorithm: Having created an
iteration-specific input data set, the KDT expert carefully chooses an appropriate
clustering technique and its parameters (cf. Subsection 4.3.2). When parameterizing
a selected clustering algorithm, the expert takes into account the current progress
of the knowledge discovery process, which is measured by the fraction of text units
already assigned to qualitatively acceptable clusters. If possible, the algorithm is at
first parameterized to discover frequently occurring and/or very specific thematic
concepts. As the number of completed iterations increases, parameters are modified
to find more general and/or less frequent semantic concepts as well. The necessary
parameter modifications depend on the chosen algorithm.

125

4 DIAsDEM Knowledge Discovery Process

1
| Mapping Text Units onto Text Unit Vectors | e

/

Clustering of Text Unit Vectors:

Selection of Algorithm, Parameter Setting,
Execution of Algorithm, Ranking of Clusters

Clustering lteration

Qualitatively Qualitatively Un-
Acceptable Clusters Acceptable Clusters

Figure 4.2: Iterative Clustering in the DIASDEM Knowledge Discovery Process

3. Automatic ranking of the resulting text unit clusters: Based on DIASDEM cluster

126

quality criteria specified by the KDT expert, all text unit clusters output by the
executed algorithm are partitioned into qualitatively acceptable and unacceptable
clusters. Within each category, text unit clusters are ranked by decreasing quality
index (cf. Subsection 4.3.3) to facilitate an efficient inspection by human experts. As
the number of completed iterations increases, qualitatively acceptable clusters tend
to be smaller and less homogeneous. Hence, the KDT expert gradually relaxes the
thresholds for acceptable clusters by modifying the iteration-specific cluster quality
criteria (i.e., dominant descriptor threshold, rare descriptor threshold, maximum
descriptor coverage, minimum descriptor dominance, and/or minimum cluster size).

Interactive screening of the cluster ranking: As emphasized in Section 3.3, the en-
tire knowledge discovery process is interactive, or semi-automated, to ensure a high
quality of semantic markup. In particular, we highly recommend checking the au-
tomatically derived cluster quality assessments. Although the DIASDEM cluster
quality criteria are carefully designed to distinguish ‘good’ clusters from ‘bad’ ones,
they cannot guarantee completely error-free assessments due to the complexity and
diversity of written language. Thus, a domain expert is asked to approve or reject

4.3 Clustering of Text Unit Vectors

automatically generated cluster quality assessments.

Subsequent to the final human cluster validation, all text units assigned to acceptable
clusters are put aside for semantic labeling in the post-processing step. By contrast,
text units assigned to the remaining, unacceptable clusters constitute the input to the
next clustering iteration. If no qualitatively acceptable text unit cluster is discovered at
all, the iterative clustering procedure is discontinued, and the post-processing phase of
our knowledge discovery process starts. Otherwise, iterative clustering is continued until
a stopping criterion specified by the domain or KDT expert is satisfied. Conceivable
stopping criteria are, for example, a minimum number of remaining text units or the
non-existing subjective interestingness, or relevance, of all/most semantic concepts that
are represented by qualitatively acceptable text unit clusters in the current iteration.

To achieve a high quality of markup, our knowledge discovery process is inherently
interactive and offers various possibilities for well-directed human intervention. Basically,
the expert may select a different clustering algorithm in each iteration. In earlier itera-
tions, for example, SNN clustering (Ertoz et al., 2004) is appropriate to discover highly
specific thematic clusters while ignoring thematic outliers. In later iterations, the bisecting
k-means (Steinbach et al., 2000) is, for instance, applicable to find a small, predetermined
number of clusters that are more likely to represent less specific thematic concepts. When
executing the same algorithm in multiple iterations, the KDT expert may furthermore
relax its parameters. For example, gradually reducing the size of a Self-Organizing Map
(SOM,; cf. Kohonen, 2001) typically results in discovering less specific semantic concepts.
Moreover, the human expert may step by step reduce the requirements for acceptable
text unit clusters in terms of the applied DIASDEM cluster quality criteria. Finally,
mapping text units onto real-valued vectors involves decisions concerning the weighting of
text unit descriptors (cf. Subsection 4.2.5), which may also be adjusted between different
iterations. When employing the weighting scheme suggested in Subsection 4.2.5, however,
the collection frequency components of descriptor weights typically vary without human
intervention due to the step-by-step reduction of the collection size from one iteration to
the other. The discrepancy between the desire to automatically discover semantic con-
cepts on the one side and the need to incorporate human domain, process, and algorithm
knowledge on the other is discussed in Section 4.6.

We present and discuss the successful application of our DIASDEM framework in
two real-world case studies in Chapter 6. Despite the achieved success in semantically
marking up text documents, two particularities of the iterative clustering approach have
to be taken into account when employing our framework. Firstly, one semantic concept
might be represented by several text unit clusters. This particularity is mostly caused by
the concretely utilized clustering algorithms and their parameter settings. Additionally,
it is conceivable that one semantic concept is represented by several combinations of
descriptors. While important, a careful parameterization of clustering algorithms thus
cannot entirely prevent this first effect. Secondly, text unit vectors cannot be assigned
to qualitatively acceptable clusters discovered in any preceding iteration. Due to this
particularity, the first effect may of course occur such that the same semantic concept is

127

4 DIAsDEM Knowledge Discovery Process

Clustering lteration 1

Mapping 25 Text Units onto
Text Unit Vectors

Clustering Iteration 2

Clustering Iteration 3

\

Mapping 18 Text Units onto
Text Unit Vectors

Mapping 10 Text Units onto
Text Unit Vectors

Execution of the Bisecting

k-Means (k = 8), Automated
Ranking of Clusters, Inter—
active Screening of Ranking

f

f

Execution of the Bisecting

k-Means (k = 7), Automated
Ranking of Clusters, Inter-
active Screening of Ranking

Execution of the Bisecting

k-Means (k = 6), Automated
Ranking of Clusters, Inter-
active Screening of Ranking

Clustering Iteration 4

Mapping 8 Text Units onto
Text Unit Vectors

f

Execution of the Bisecting

k-Means (k = 5), Automated
Ranking of Clusters, Inter-
active Screening of Ranking

b b b b
D @ D) @

1 Qualitatively 7 Qualitatively 3 Qualitatively 4 Qualitatively 1 Qualitatively 5 Qualitatively No Qualitatively 5 Qualitatively
Acceptable Unacceptable Acceptable Unacceptable Acceptable Unacceptable Acceptabl Ur ptabl
Cluster with Clusters with Clusters with Clusters with Cluster with Clusters with Cluster Clusters with
7 Text Units 18 Text Units 8 Text Units 10 Text Units 2 Text Units 8 Text Units 8 Text Units

Figure 4.3: Tllustration of Pattern Discovery in Four Clustering Iterations

spread over multiple clusters across different iterations. Furthermore, text unit vectors
may be considered as outliers although they represent a semantic concept associated with
an acceptable cluster from a preceding iteration. Again, the second effect can be reduced
by executing suitable and appropriately parameterized clustering techniques.

The fundamental idea of iterative clustering, namely, the repeated execution of a clus-
tering algorithm on a gradually and interactively reduced data set, resembles the core
idea of SCATTER/GATHER (Cutting et al., 1992). Unlike a focused, query-based search
for narrowly specified documents, this cluster-based information retrieval system is de-
signed to facilitate an open-ended exploration of large document collections in iterative
and interactive browsing sessions. Each iteration comprises a so-called scatter step, in
which documents are clustered, and a so-called gather step, in which the user selects in-
teresting document clusters for further, detailed analysis. Initially, the entire archive is
segmented, or scattered. Thereafter, only documents assigned to interesting, manually
selected clusters form a new sub-collection to be segmented. Hence, SCATTER/GATHER
collects all documents considered interesting by the user and re-scatters them to form new
groups of similar documents. In contrast, our DIASDEM framework groups structural
text units instead of entire documents. Above all, however, we advocate ‘gathering’ and
‘re-scattering’ text units assigned to unacceptable, uninteresting clusters. Members of
acceptable clusters are put aside for semantic labeling in DIASDEM whereas documents
in less interesting clusters are ignored in the following SCATTER/GATHER iterations.

An Example Our iterative clustering approach to pattern discovery is illustrated using
the small example text archive of news stories tg; through tgs, which altogether con-
tain 25 sentences (cf. Table 4.1 on page 72). We refrain from discussing the completed

128

4.3 Clustering of Text Unit Vectors

Table 4.20: Summary of Pattern Discovery in Four Clustering Iterations

Cluster- Input Parameter Dominant Rare Maximum Minimum Minimum
ing Iter- Text of Bisecting Descriptor Descriptor Descriptor — Descriptor Cluster
ation Units k-Means Threshold Threshold Coverage Dominance Size
1 25 k=8 0.80 0.01 0.20 0.60 4
2 18 k=17 0.80 0.01 0.30 0.40 2
3 10 k=6 0.80 0.01 0.40 0.30 2
4 8 k=5 0.80 0.01 0.50 0.20 2
Cluster- Number of Clusters (Number of Text Units Therein) after: Stop
ing Iter- Automated Ranking of Clusters Interactive Screening of Ranking Iterative
ation Acceptable Unacceptable Acceptable Unacceptable Clustering
1 1(7) 7 (18) 1(7) 7 (18) No
2 4 (10) 3(8) 3(8) 4 (10) No
3 3 (6) 3 (4) 1(2) 5 (8) No
4 1(2) 4 (6) 0 (0) 5 (8) Yes

pre-processing steps extensively described throughout Section 4.2. Figure 4.3 schemati-
cally depicts the pattern discovery phase, which comprises four clustering iterations. In
each iteration, (i) text units are mapped onto vectors using the weighting scheme sug-
gested in Subsection 4.2.5, (ii) the bisecting k-means algorithm (Steinbach et al., 2000)
is executed, (iii) the resulting clusters are automatically ranked to separate qualitatively
acceptable clusters from unacceptable ones, and (iv) a domain expert interactively checks
and corrects, if necessary, the automatically generated quality assessment.

Table 4.21: Sentences Assigned to Qualitatively Acceptable Text Unit Cluster 1 in Iter-
ation 2 (cf. News Items in Table 4.1 on Page 72)

Sentence of Reuters News Item Item Text Sentence
— Chicago newsdesk 312 408-8787 17109 tgo 5
Chicago Newsdesk 312-408-8787 78899 tpy 5
—Chicago Newsdesk 312-408-8787 16106 tg; 4
— New York Newsdesk +1 212 859 1610 115995 tgs 5

The bisecting k-means, which is used here in combination with cosine similarity, is a
suitable technique for our KDT process (cf. Subsection 4.3.2). This algorithm was chosen
for illustrative purposes because only one intuitive parameter needs to be set: the number
of desired clusters k. All relevant settings of four performed clustering iterations along
with their respective results are compiled in Table 4.20 on page 129.

To find less specific semantic concepts, the number £ of clusters is reduced in each

129

4 DIAsDEM Knowledge Discovery Process

Table 4.22: Sentences Assigned to Qualitatively Acceptable Text Unit Cluster 3 in Iter-
ation 2 (cf. News Items in Table 4.1 on Page 72)

Sentence of Reuters News Item Item Text Sentence
Terms were not disclosed. 16106 tg; 3
Terms were not disclosed. 78899 tpa 4

Table 4.23: Sentences Assigned to Qualitatively Unacceptable, Inhomogeneous Text Unit
Cluster 2 in Iteration 2 (cf. News Items in Table 4.1 on Page 72)

Sentence of Reuters News Item Item Text Sentence

The company said it has retained the New York investment banking firm 71177 fgs 3
of Goldman, Sachs & Co. to explore its strategic options with the 1,500-
employee unit.

The mortgage unit, which is headquartered in Woodland Hills, Calif., orig- 71177 tgs 4
inated $2.1 billion in residential first mortgages in the eight months that
ended Aug. 31.

iteration. Analogously, the DIASDEM cluster quality criteria are gradually relaxed.
After four iterations, 17 of 25 sentences are assigned to four qualitatively acceptable
clusters. The only ‘good’; highly specific text unit cluster discovered in the first iteration
is visualized in Table 4.14 on page 116. Recall the unacceptable, rather inhomogeneous
cluster found in iteration 1 and listed in Table 4.15 on page 117. In the second iteration,
this text unit cluster is split into two distinct, acceptable clusters featuring the semantic
concepts ‘editing newsdesk’ (see Table 4.21) and ‘nondisclosure of terms’ (see Table 4.22),
respectively. Furthermore, Table 4.23 illustrates a text unit cluster from iteration 2, which
is acceptable according to the automated ranking based on DIASDEM cluster quality
criteria. Although the descriptors "unit" and place are truly dominant therein, both
sentences do not share a common, domain-specific semantic concept other than the trivial
theme ‘statement about a specified business unit’. Since these two sentences are assigned
to the same cluster in iterations 2 through 4, the domain expert constantly rejects the
automatically generated, positive cluster quality assessment.

Effect on KDT Process Flow The iterative clustering phase of our knowledge discovery
process starts subsequent to the completed execution of the three algorithms Decompose-
AndTokenizeTextDocuments, ExtractNamedEntities, and LemmatizeAndDisambiguate-
Words in the pre-processing phase. Prior to describing an algorithm that encapsulates a
single clustering iteration, we introduce a few framework-specific abstract data types.
The pre-processing step of mapping text units onto vectors is considered a core step

130

4.3 Clustering of Text Unit Vectors

of iterative clustering. Although we have proposed a suitable weighting scheme for com-
mon text archives in Subsection 4.2.5, different types of archives may necessitate the
application of other weighting schemata. Therefore, we do not define one algorithm
for generating text unit vectors, but rather introduce the corresponding abstract data
type DescriptorWeightingScheme (see Appendix B.34 on page 239). Descriptor weight-
ing schemata typically consist of three components, some of which (e.g., the collection
frequency components) are computed once in the knowledge discovery phase and after-
wards retrieved for usage in the batch-oriented knowledge application phase. There-
fore, the ADT DescriptorWeightingScheme provides two different mapping operations as
well: createVectorsInDiscoveryMode(ar: IntTextArchive, V: Controlled Vocabulary): Int-
TextArchive and createVectorsInApplicationMode(a, : IntTextArchive, V : Controlled-
Vocabulary): IntTextArchive. Both operations create text unit vectors for all intermediate
text units in the respective intermediate text archive that are not yet assigned to an ac-
ceptable cluster and whose semantic concept assumes the null value. If necessary, the
operation createVectorsInDiscoveryMode additionally computes and persistently stores
iteration-invariant weighting components for usage during knowledge application.

The DIASDEM framework for semantic XML tagging incorporates a plug-in concept
for conventional clustering algorithms that satisfy the requirements introduced in Sub-
section 4.3.2. Due to the potentially large number of applicable clustering techniques,
we merely define the abstract data type ClusteringAlgorithm (see Appendix B.35 on
page 240) without elaborating on the intricacies of particular methods. Consequently,
instances of this ADT are only characterized by the respective clustering iteration num-
ber as well as two strings that contain the name and parameters, respectively, of the
algorithm to be executed. This abstract data type provides two main operations, namely,
executelnDiscoveryMode(ar: IntText Archive): IntText Archive and executelnApplication-
Mode(aa : IntTextArchive): IntTextArchive. The former operation is executed in the
knowledge discovery phase. Its objective is to discover a new text unit clustering of all
text units in the training archive a that are not yet assigned to an acceptable cluster
and whose semantic concept hence takes the null value. Subsequent to cluster discov-
ery, algorithm-specific cluster descriptions (e.g., cluster centroids; cf. Subsection 4.3.2)
are persistently stored by the respective ADT instance. The latter operation executes
the encapsulated algorithm in application mode. This mode utilizes existing cluster de-
scriptions for the purpose of assigning new text unit vectors to existing clusters in the
batch-oriented knowledge application phase.

Each clustering iteration is closely associated with the following, iteration-specific meta-
data: iteration number, parameterized descriptor weighting scheme, parameterized clus-
tering algorithm, DIASDEM cluster quality criteria, and resulting text unit clustering.
Since these metadata items are required in the corresponding classification iteration of
the knowledge application phase, they have to be persistently stored for subsequent usage
as well. For example, the clustering algorithm is executed in application mode to assign
new text unit vectors to clusters discovered in a clustering iteration. In addition, the text
unit clustering encapsulates the final cluster quality decisions. To fulfill this requirement,

131

4 DIAsDEM Knowledge Discovery Process

Algorithm 4.4 PerformClusteringlteration (Outline)

Input: (& IntTextArchive, m: IterationMetadata)
Output: (a: IntTextArchive, m: IterationMetadata)
1: a:= m.descriptorWeightingScheme().createVectorsInDiscoveryMode(a)
2: a:= m.clusteringAlgorithm().executeInDiscoveryMode(a)
3: Cg: TextUnitClustering := C;.create(a, m.iterationNumber(),
m.clusteringAlgorithm (). maximumClusterIdentifier())
C;.automatedRankingOfClusters(m)
C;.interactiveScreeningOfClusterRanking(m)
// iteration-specific post-processing of discovered patterns: semantically label acceptable text
// unit clusters and update semantic concept of affected intermediate text units accordingly
m.setTextUnitClustering(C;)

we introduce the abstract data type IterationMetadata (see Appendix B.37 on page 241).
This ADT is instantiated by specifying an iteration number, a parameterized descriptor
weighting scheme, a parameterized clustering algorithm, and DIASDEM cluster qual-
ity criteria. Once discovered, an iteration-specific text unit clustering is added to the
corresponding instance of the abstract data type IterationMetadata.

Algorithm 4.4 represents one clustering iteration. This algorithm takes an intermediate
text archive and an instantiated iteration metadata container as input, performs one
clustering iteration as specified by the KDT expert when instantiating the metadata
container, and finally returns the modified input parameters. In lines 1 through 5 and 8§,
all iteration-specific operations described in this subsection are performed by executing
ADT operations. Apart from the interactive screening, all operations in Algorithm 4.4
are automatically executed after the initial parameterization.

In the next section, we discuss the post-processing phase of our knowledge discovery
process in detail. In particular, the important issue of semi-automated cluster labeling is
introduced in Subsection 4.4.1. Analogous to creating text unit vectors by pre-processing
text units, semantic cluster labeling is a post-processing step in principle. However, as
indicated by lines 6 and 7 of algorithm PerformClusteringlteration, we nevertheless include
this important post-processing step directly in a DIASDEM clustering iteration. Hence,
Algorithm 4.4 is extended accordingly in Subsection 4.4.1. Subsequent to interactively
screening ranked text unit clusters, qualitatively acceptable ones are semi-automatically
labeled and their text units are assigned the corresponding semantic concept.

4.4 Post-Processing of Discovered Patterns

In the generic KDT process outlined in Subsection 2.1.1, all discovered patterns are in-
terpreted and evaluated in the post-processing phase to eliminate uninteresting, useless,
and already known patterns. The remaining ones are considered to be knowledge, which
is finally applied to attain the initial objective. As indicated in Section 3.3, the post-
processing phase of our specific knowledge discovery process encompasses (i) the semi-

132

4.4 Post-Processing of Discovered Patterns

automated semantic labeling of qualitatively acceptable clusters introduced in the next
subsection, (ii) the automated establishment of a domain-specific, concept-based XML
document type definition discussed in Subsection 4.4.2; as well as (iii) the transformation
of training texts into semantically tagged XML documents described in Subsection 4.4.3.

4.4.1 Recommending Semantic Cluster Labels

In the preceding section, we have concluded that discovered text unit clusters are parti-
tioned into qualitatively acceptable and unacceptable clusters in each clustering iteration.
As part of the post-processing of discovered patterns within each clustering iteration, ac-
ceptable text unit clusters are semi-automatically assigned a content-descriptive, semantic
label. In accordance with Definitions 1 and 6, a semantic cluster label concisely describes
the concept that domain experts typically associate with text units assigned to the respec-
tive cluster. To facilitate the creation of high-quality semantic markup, we intentionally
take a semi-automated approach to cluster labeling. More concretely, default cluster la-
bels are automatically derived for all acceptable clusters. Subsequently, label suggestions
are approved or rejected (i.e., corrected) by the domain expert.

We proceed by briefly reviewing relevant work on labeling clusters of text documents.
Subsequently, we introduce the DIASDEM approach to suggesting content-descriptive
labels for text unit clusters, which is inspired by related work. We conclude this subsection
by outlining the effect of labeling acceptable clusters on the KDT process flow.

Related Work on Cluster Labeling In general, as Jarvis and Patrick (1973, p. 1029)
emphasized, “clustering cannot provide naming.” The authors clearly separated the task
of employing unsupervised learning to find clusters in a data set from assigning names to
clusters. The latter task involves attaching meaning to identified clusters and therefore
requires an external interpretation by human investigators who have contextual, domain-
specific knowledge. Automatic attempts at naming clusters thus cannot guarantee mean-
ingful results. This view apparently holds three decades later. According to Feldman and
Sanger (2007, p. 91), for example, “the problem is to give the user a meaningful cluster
label.” In this context, Sacco (2000, p. 475) argued that clustering methods are capable of
finding concepts in a corpus, but they cannot synthesize human-understandable concept
labels. Despite the variety of existing approaches to discovering concepts in texts, Stein
and Meyer zu Eissen (2004, p. 353) as well as Treeratpituk and Callan (2006, p. 278)
emphasized that less attention had been directed at adequately characterizing them in a
concise, content-descriptive, and human-comprehensible way.

Many techniques for labeling clusters of textual data exploit properties of specific clus-
tering algorithms or certain classes of algorithms. Karypis and Han (2000a) as well
as Hotho et al. (2003b), for instance, employed labeling methods that are restricted to
centroid-based clustering algorithms, like the bisecting k-means (Steinbach et al., 2000)
outlined in Subsection 4.3.2. Both groups of authors characterized clusters of text docu-
ments by the n € N highest weighted terms in their centroids. Thereby, emphasis is placed

133

4 DIAsDEM Knowledge Discovery Process

on the ‘most important’ terms according to the clustering result. Obviously, this label-
ing method is highly influenced by the chosen term weighting scheme. This approach to
cluster labeling, however, does not output labels as created by humans, but rather creates
lists of important key words. Hotho et al. (2003b) acknowledged this disadvantage and
suggested utilizing an existing, domain-specific ontology (cf. Subsection 2.2.3) to explain
clustering results. This extension is not applicable in our DIASDEM framework because
we do not require an existing ontology as input. For analogous reasons, cluster description
methods that require a priori given, formalized domain knowledge (e.g., see Jain et al.,
1999, pp. 290-292) are not applicable either.

Inferring meaningful descriptions of hierarchically clustered texts is another area of
research into cluster labeling. For example, Chakrabarti et al. (1998, p. 165), Glover et al.
(2002, 2003), as well as Treeratpituk and Callan (2006) presented techniques designed
to infer content characterizations and labels, respectively, for document clusters in a
hierarchy. As the DTASDEM framework does not aim at discovering hierarchies of text
unit clusters, we refrain from discussing hierarchical cluster label inference in detail.

Another strain of research is focused on Self-Organizing Maps (cf. Kohonen, 2001), as
introduced in Subsection 4.3.2. For instance, the LABELSOM algorithm extracts fea-
tures from map units, or clusters, that best characterize the input data assigned to these
map units (Rauber, 1999; Rauber and Merkl, 2003). Analogous to centroid-based label-
ing methods, LABELSOM takes advantage of the reference vector associated with each
map unit. In contrast, LABELSOM does not extract terms that are assigned the high-
est weights in each centroid, but outputs terms shared by many documents in a cluster.
WEBSOM is a SOM-based document clustering method that reduces the dimensionality
of document vectors by means of random projection prior to training a map (see Kohonen,
2001, pp. 286-299). Due to the dimensionality reduction, reference vectors of map units
cannot be directly exploited as label clusters. In this context, Lagus and Kaski (1999) pre-
sented a WEBSOM-specific method for selecting cluster keywords. The authors argued
that good keywords characterize outstanding properties of the focal cluster in relation to
the rest of the document archive. Thus, Lagus and Kaski suggested a labeling technique
that exploits differences of term frequency distribution between the focal cluster and the
entire archive. Because this approach requires the computation of many relative term fre-
quencies, Azcarraga et al. (2004) proposed a similar, yet much faster, labeling algorithm
that takes advantage of the random projection method.

Many techniques that are independent of the concretely applied clustering algorithm
only take term frequencies into consideration. For example, Cody et al. (2002, pp. 702—
703) proposed a so-called category labeling algorithm that is solely based on the occurrence
of terms in clusters. To create a label, this method firstly concatenates all words occurring
in more than 90% of all documents using the character ‘&’. If no term appears in more
than 10% of the documents in a cluster, it is labeled ‘miscellaneous’. Otherwise, the
cluster label is a successively created, comma-separated list comprising the most frequent
terms. Popescul and Ungar (2000), however, warned of merely considering the cluster-
specific term frequency for labeling purposes. Although the list of most frequent words

134

4.4 Post-Processing of Discovered Patterns

often reveals the high-level subject, it may fail to convey cluster-specific themes that best
differentiate between clusters. Often, the most frequent terms in a cluster are actually
meaningless, collection-specific stopwords (e.g., ‘compute’ in computer science abstracts)
that do not convey additional information about a cluster’s content.

According to Sanderson and Lawrie (2000, pp. 243-244), the classic approach to se-
lecting terms as components of cluster labels involves searching for ‘unusually frequent’
terms in each cluster. To that end, the authors suggested comparing the frequency of each
term’s occurrence with its frequency in the entire collection. Subsequent to ranking all
terms appearing in a cluster by decreasing comparison ratio, the top n € N terms serve as
cluster labels. Strehl et al. (2000) took a slightly different approach by characterizing each
cluster with three descriptive and three discriminative terms. The former ones exhibit the
greatest term frequency in the respective cluster whereas the latter terms have the highest
frequency multiplier when compared to the average document in the collection. Kulkarni
and Pedersen (2005) extracted both descriptive labels defined analogously to Strehl et al.
and discriminating labels. The latter ones consist of descriptive terms that do not serve as
descriptive labels in any other document cluster. Analogously, Geraci et al. (2006) empha-
sized that the quality of cluster labels depends on their well-formedness, their descriptive
power, and their discriminative power.

Semantic Cluster Labeling in DIAsDEM Instead of generating truly meaningful labels
like the ones created by humans, existing approaches to automated cluster labeling typi-
cally extract terms from documents assigned to a cluster that altogether characterize its
content. This approach is also adopted in the DIASDEM framework for semantic XML
tagging. Due to our plug-in concept for clustering algorithms, we cannot employ cluster
labeling techniques that are restricted to a certain clustering algorithm or a family thereof.
Hence, our KDT process encompasses an automated, frequency-based method of creating
default labels for qualitatively acceptable text unit clusters. To ensure a high quality
of semantic XML markup, however, we strongly recommend checking, and if necessary
correcting, all default cluster labels by a domain expert. Consequently, text unit clusters
are semantically labeled in a two-step process:

1. Automatic default labeling of acceptable clusters: Initially, all qualitatively accept-
able clusters are assigned a default label. To generate the default label for a text
unit cluster, all dominant descriptors occurring therein are identified, ordered by
decreasing descriptor dominance, concatenated using the underscore character "_",
and finally prefixed with "DEFAULT_". By utilizing dominant text unit descriptors
as content-descriptive terms, we again consider our framework-specific notion of
cluster quality introduced in Subsection 4.3.3. Since cluster labels serve as names
of semantic XML tags and elements of the concept-based XML DTD, respectively,
they are restricted to comprise a limited, standardized set of characters only (see
World Wide Web Consortium, 2000). Unlike some approaches to cluster labeling
discussed above, we intentionally refrain from using discriminative terms when la-
beling text unit clusters. Discriminative descriptors are neither determined nor

135

4 DIAsDEM Knowledge Discovery Process

Table 4.24: Summary of Semantic Cluster Labeling in Four Clustering Iterations

Cluster- Number of Automatically Final Custer Label See
ing Iter- Acceptable Created Default upon Completion of Table
ation Cluster Cluster Label Interactive Review
1 4 DEFAULT_sale_unit Sale0fBusinessUnit 4.14
2 1 DEFAULT_Newsdesk_place EditingNewsdesk 4.21
2 3 DEFAULT_termsagreement_not_disclose NondisclosureOfTerms 4.22
2 6 DEFAULT_expect_closing ExpectedDealClosing 4.25
3 5 DEFAULT unit_sale_agreement AgreementOnUnitSale 4.26

utilized in the labeling step because our DTIASDEM knowledge discovery process
aims at finding frequently recurring thematic concepts. The most discriminative
terms, however, are often “rather obscure words” (Popescul and Ungar, 2000, p. 1)
and thus typically provide limited insight into the prevailing thematic subject of
a text unit cluster. Furthermore, structural text units are typically smaller than
entire documents addressed by the work discussed above. Clusters of smaller text
units tend to be thematically more focused than clusters of larger documents.

2. Interactive review of default cluster labels: Ultimately, cluster labels serve as names
of semantic XML tags and elements of the concept-based XML DTD, respectively, to
reap the benefits of semantic markup (cf. Section 1.3). Merely concatenating domi-
nant descriptors may provide an accurate, coarse, and high-level content description,
but descriptor lists rarely facilitate a meaningful, domain-specific, and above all us-
able markup of text units. To overcome this limitation, we strongly recommend an
interactive screening of automatically generated cluster labels. The domain expert
is asked to inspect text units assigned to a cluster, or a sample thereof, in combina-
tion with cluster-specific frequency statistics of both text unit descriptors and terms
not covered by the corresponding controlled vocabulary. Supported by this auto-
matically created cluster visualization, the human expert is capable of efficiently
correcting default cluster labels, if necessary. This interactive process involves, but
is not limited to, (i) rearranging dominant text unit descriptors in another order,
(ii) substituting dominant descriptors with more general terms, (iii) adding words
to labels, which are neither descriptors nor non-descriptors, that frequently appear
in a cluster, and/or (iv) adding coordinating conjunctions and prepositions, such as
‘of” or ‘by’. Upon completion of this interactive review, cluster labels explicitly con-
vey informal metadata about the meaning of the respective text units by concisely
describing concepts that domain experts typically associate with these text units
(cf. Definitions 1 and 6).

Table 4.24 illustrates our framework-specific concept of semantic cluster labeling on the
basis of the running example. Each line of this table corresponds to one qualitatively

136

4.4 Post-Processing of Discovered Patterns

Table 4.25: Sentences Assigned to Qualitatively Acceptable Text Unit Cluster 6 in Iter-
ation 2 (cf. News Items in Table 4.1 on Page 72)

Sentence of Reuters News Item Item Text Sentence

Closing is expected on August 30. 17109 tgo 4

The companies indicated that the sale is expected to be completed by the 115995 tgs 3
end of November.

Table 4.26: Sentences Assigned to Qualitatively Acceptable Text Unit Cluster 5 in Iter-
ation 3 (cf. News Items in Table 4.1 on Page 72)

Sentence of Reuters News Item Item Text Sentence

Miller Building Systems Inc said it agreed to sell its Miller Structures Inc 78899 tgy 2
unit in California to Modtech Inc, a maker of modular classrooms.

VASCO Corp said it agreed to sell its consulting and technical organiza- 16106 tg; 2
tion, VASCO Performance System, to Wizdom Systems Inc.

acceptable text unit cluster and lists the iteration number, its cluster number, the au-
tomatically generated default cluster, the final cluster label chosen by a domain expert,
as well as a reference to the table visualizing all text units assigned to the respective
cluster. In this context, Tables 4.25 and 4.26 show the content of two qualitatively ac-
ceptable text unit clusters that have not yet been referred to in the course of this work.
Inspecting all five clusters reveals that list-based default labels, which are prefixed with
"DEFAULT_", apparently provide a correct, high-level content description for text units
assigned to the corresponding clusters. For all five clusters, however, the domain expert
modified the default label to make explicit the prevailing semantic concept in a concise
and human comprehensible way. In this example, dominant descriptors were typically re-
ordered and augmented with conjunctions or prepositions (e.g., AgreementOnUnitSale).
Furthermore, a few words were added to default labels to make the respective context
more explicit (e.g., ExpectedDealClosing). In particular, the label EditingNewsdesk
illustrates the necessity of utilizing human domain knowledge.

Effect on KDT Process Flow When introducing the algorithm PerformClusteringltera-
tion in Subsection 4.3.4 on iterative clustering, we have anticipated that discovered pat-
terns remain to be post-processed prior to starting a new iteration. Acceptable text
unit clusters are semantically labeled, and the concept of their intermediate text units
is set accordingly. Consequently, Algorithm 4.5 on page 138 extends the algorithm
PerformClusteringlteration such that each clustering iteration is finalized by appropri-
ately labeling discovered text unit clusters that are considered qualitatively acceptable.

137

4 DIAsDEM Knowledge Discovery Process

Algorithm 4.5 PerformClusteringlteration (Complete)

Input: (& IntTextArchive, m: IterationMetadata)
Output: (a: IntTextArchive, m: IterationMetadata)

1: a:= m.descriptorWeightingScheme().createVectorsInDiscoveryMode(a)

2: a:= m.clusteringAlgorithm().executeInDiscoveryMode(a)

3: Cg: TextUnitClustering := C;.create(a, m.iterationNumber(),
m.clusteringAlgorithm (). maximumClusterIdentifier())
C;.automatedRankingOfClusters(m)
C;.interactiveScreeningOfClusterRanking(m)
C;.automatedLabelingOfClusters(m)
C;.interactiveReviewOfClusterLabels(m)
m.setTextUnitClustering(C;)

Subsequent to automatically ranking clusters and interactively screening the result,
the operation automatedLabelingOfClusters(m: IterationMetadata) of abstract data type
TextUnitClustering is executed (cf. line 6 of Algorithm 4.5). For each qualitatively ac-
ceptable cluster in the iteration-specific text unit clustering, a default label is automat-
ically created. More specifically, cluster labels are encapsulated by the corresponding
concepts (see Definition 6 on page 59 and Appendix B.8). In addition, all intermediate
text units assigned to acceptable clusters are updated accordingly to associate them with
semantic concepts as well. The strongly recommended interactive review of default clus-
ter labels is performed by executing the operation interactiveReviewOfClusterLabels(m:
IterationMetadata) of abstract data type TextUnitClustering. This operation supports
domain experts in interactively approving or, if necessary, correcting automatically gen-
erated cluster labels. Correcting cluster labels and concepts, respectively, also triggers a
concept update of intermediate text units assigned to the respective clusters. At the end
of each clustering iteration, all intermediate text units assigned to qualitatively acceptable
clusters comprise the corresponding concept. Analogously, concepts of intermediate text
units assigned to unacceptable clusters take the null value. Unless the iterative clustering
process is discontinued, the latter text units are input to the next iteration because they
are assigned to unacceptable and thus unlabeled clusters.

4.4.2 Establishing a Concept-Based XML DTD

Upon completion of the iterative clustering phase, two important steps of the post-
processing phase remain to be accomplished. The final conversion of the entire training
text archive into semantically marked-up XML documents requires an existing concept-
based XML document type definition. In this subsection, we focus on the task of deriving
this XML document type definition and therefore concisely recap relevant terminology,
describe the process of establishing a concept-based DTD, present an example, and outline
the effect of DTD creation on the KDT process flow.

138

4.4 Post-Processing of Discovered Patterns

Terminology In Definition 12 on page 61, we have introduced the framework-specific no-
tion of conceptual document structures, whose instances are encapsulated by the abstract
data type ConceptualDocumentStructure (see Appendix B.18 on page 227). Each instance
of this ADT encompasses the information necessary to establish the corresponding XML
DTD: the concepts identified during the pattern discovery phase along with frequently
occurring named entity types. Following the construction of a conceptual document struc-
ture from an intermediate text archive, the corresponding XML document type definition
can be straightforwardly output by applying the syntax rules defined by the World Wide
Web Consortium (2000). To enable a valid semantic XML markup of new text documents
originating from the same domain as the training archive, the resulting conceptual docu-
ment structure is persistently stored for usage in the batch-oriented knowledge application
phase of our framework.

Subsequent to its creation, a conceptual document structure comprises all concepts
discovered in the corresponding intermediate text archive. Furthermore, the resulting
conceptual document structure establishes a connection between concepts and named en-
tity types that frequently appear in intermediate text units assigned to them. To focus on
concept-specific named entity types that typically occur within a certain semantic context,
infrequent or noisy occurrences of named entity types are omitted when constructing a
conceptual document structure. Particularities of the domain under consideration often
necessitate utilizing an adjustable threshold for distinguishing between signal (i.e., typical
named entity types in text units featuring a certain concept) and noise. Since named
entity types ultimately correspond to attributes of semantic XML tags, we introduce our
framework-specific notion of attribute support as follows:

Definition 40 (Attribute Support) Let a: IntTextArchive denote an intermediate text
archive. The attribute support a.attributeSupport(o, p) of named entity type p: NamedEn-
tity Type within intermediate text units of a assigned to concept o: Concept is defined as
the ratio of the number of intermediate text units in a that are assigned to concept o and
whose set of intermediate named entities contains a named entity of type p, to the total
number of intermediate text units in a assigned to concept o. If no intermediate text unit
is assigned to concept o, a.attributeSupport(o, p) is defined to be zero.

A formal, multi-set-based definition of attribute support is given in the specification of
the ADT IntTextArchive in Appendix B.29. Attribute support takes values in the interval
[0; 1]. Analogous to our notion of descriptor support, this term is inspired by the support
of association rules in a data set (cf. Agrawal et al., 1993, p. 208). Attribute support serves
as a thresholding input parameter and thus allows for incorporating domain knowledge in
the knowledge discovery process. For typical text archives, a threshold of 0.1 constitutes
an appropriate setting. In this case, a named entity type only becomes an attribute of a
certain XML tag if at least 10% of the text units assigned to the corresponding semantic
concept comprise named entities of the focal type.

139

4 DIAsDEM Knowledge Discovery Process

Table 4.27: Labels of Conceptual Document Structure NewsItem Describing the Exem-
plary Text Archive (cf. News Items in Table 4.1 on Page 72)

Label of Concept i Labels of Named Entity Types Occurring within Concept i

.

AgreementOnUnitSale Company, Place
EditingNewsdesk Place
ExpectedDealClosing Date
NondisclosureOfTerms
SaleOfBusinessUnit Company

T W N~

From Conceptual Document Structures to Concept-Based XML DTDs As intro-
duced in Chapter 3, a conceptual document structure is once created in the knowledge
discovery phase of the DIASDEM framework. Initializing a domain-specific conceptual
document structure requires (i) enumerating the distinct semantic concepts identified
during the preceding iterative pattern discovery phase, (ii) collecting the concept-specific
set of extracted named entity types for each semantic concept, and finally (iii) apply-
ing a user-supplied attribute support threshold to remove noise from the concept-specific
lists of named entity types. This procedure is encapsulated by the constructor create(Lnit:
String, a: Int TextArchive, pas: Real) of the abstract data type ConceptualDocumentStruc-
ture (see Appendix B.18 on page 227). Given the alphanumeric label Iy that concisely
describes the common theme of text documents in intermediate text archive a and the
attribute support threshold pag, this constructor performs one pass over all text units in
a to collect semantic concepts and named entity types occurring in their respective text
units as well as one pass over all concept-specific sets of named entity types to apply the
attribute support threshold.

Table 4.27 lists the main content of the conceptual document structure established for
the small exemplary text archive used throughout this chapter. Automatically created on
the basis of an attribute support of 10%, this conceptual document structure comprises
all semantic concepts discovered and labeled during the pattern discovery phase (cf. Ta-
ble 4.24 on page 136). For instance, at least 10% of all text units featuring the concept
labeled AgreementOnUnitSale contain named entities of type Company and Place, re-
spectively. The corresponding text unit cluster is visualized in Table 4.26 on page 137.
By contrast, there are no named entity types whose instances appear in at least 10% of
all text units that are associated with the concept NondisclosureOfTerms.

The operation xmlDtd() of abstract data type ConceptualDocumentStructure outputs
the concept-based XML document type definition as a string. This DTD consists of
domain-specific declarations in a syntax standardized by the World Wide Web Consor-
tium (2000) that define both the components and the structure of semantically marked-up
XML documents (cf. Geroimenko, 2004, p. 42). Table 4.28 lists an exemplary, concept-
based XML document type definition. It defines the components and the structure of
semantically tagged news items from the example text archive on announcements of busi-

140

4.4 Post-Processing of Discovered Patterns

Table 4.28: Line-Numbered, Concept-Based XML Document Type Definition of the Con-
ceptual Document Structure NewsItem (cf. Table 4.27)

1: <?xml version="1.0" encoding="IS0-8859-1"7>

2

3: <!ELEMENT NewsItem (MetaData*, TaggedDocument)>

4:

5: <VELEMENT MetaData (Name, Content)>

6: <!ELEMENT Name (#PCDATA)>

7: <IELEMENT Content (#PCDATA)>

8

9: <!ELEMENT TaggedDocument (#PCDATA

10: | AgreementOnUnitSale

11: | EditingNewsdesk

12: | ExpectedDealClosing

13: | NondisclosureOfTerms

14: | SaleOfBusinessUnit

15:)* >

16:

17: <VELEMENT AgreementOnUnitSale (#PCDATA)>

18: <!ELEMENT EditingNewsdesk (#PCDATA)>

19: <VELEMENT ExpectedDealClosing (#PCDATA)>

20: <!ELEMENT NondisclosureOfTerms (#PCDATA)>

21: <!ELEMENT SaleOfBusinessUnit (#PCDATA)>

22:

23: <!ATTLIST AgreementOnUnitSale Company CDATA #IMPLIED>
24: <!ATTLIST AgreementOnUnitSale Place CDATA #IMPLIED>
25: <!ATTLIST EditingNewsdesk Place CDATA #IMPLIED>

26: <!ATTLIST ExpectedDealClosing Date CDATA #IMPLIED>
27: <VATTLIST SaleOfBusinessUnit Company CDATA #IMPLIED>

ness unit sales. The construction of concept-based DTDs is henceforth coarsely described
and illustrated by referring to Table 4.28. The DTD generation involves five major steps,
each of which performs basic string concatenations:

1. Create the XML document type definition header that consists of an XML declara-
tion specifying the XML version and the file encoding (e.g., see line 1 of Table 4.28)
and the declaration of the root element, such as NewsItem defined in line 3 of Ta-
ble 4.28. In DTDs created within our framework, the root element solely consists of
two types of children. The optional sequence of metadata elements labeled Meta-
Data allows for the persistent storage of metadata about the original text document
(e.g., its source file name). Metadata management is not covered by this work. The
mandatory element TaggedDocument comprises the results of converting the original
text document into a semantically marked-up document.

2. Generate a DTD section that defines the structure of the metadata element named
MetaData. As illustrated in lines 5 through 7 of Table 4.28, the MetaData element

141

4 DIAsDEM Knowledge Discovery Process

Algorithm 4.6 EstablishConceptualDocumentStructure

Input: (& IntTextArchive, I: String, pag: Real)
Output: (S ConceptualDocumentStructure)
1: § := ConceptualDocumentStructure.create(l, a, pas)

consists of two sub-elements (i.e., Name and Content) that contain the actual meta-
data in the form of character data. The keyword #PCDATA is historically derived
from ‘parsed character data’ (cf. World Wide Web Consortium, 2000).

3. Output a DTD section that specifies the content of the element TaggedDocument.
Since our framework for semantic XML tagging aims at marking up structural, non-
overlapping text units (cf. Definition 5 of text unit layers), the element Tagged-
Document consists of mixed content in the form of marked-up text units, which are
represented by elements labeled in accordance with semantic concepts, and plain text
units (i.e., character data specified by the keyword #PCDATA). The tagged document
section is a sequence of marked-up and plain text units. In particular, DTD ele-
ments may occur multiple times within a single marked-up document. In lines 9
through 15 of Table 4.28, the element TaggedDocument is declared for the exemplary
text archive and enumerates the labels of all discovered concepts.

4. For each DTD element that represents a semantic concept, create the corresponding
element declaration. As indicated by the stand-alone keyword #PCDATA in lines 17
through 21 of Table 4.28, these elements are defined to comprise merely character
content as our framework is intentionally restricted to generate non-overlapping text
unit markup only.

5. For DTD elements representing a semantic concept associated with at least one
named entity type in the conceptual document structure, generate the corresponding
attribute declarations. As illustrated in lines 23 through 27 of Table 4.28, each
attribute declaration associates an element name (e.g., AgreementOnUnitSale in
line 23) with one named entity type label (e.g., Company in line 23). The keyword
CDATA specifies that only string literals are allowed attribute values. All attributes
of XML tags are declared optional by the keyword #IMPLIED.

Once the concept-based XML document type definition is created, a copy is saved in the
local file system and subsequently referenced by automatically generated XML documents.
In accordance with the objectives of our framework, the generated concept-based DTD
neither supports nested semantic XML tags nor imposes any other structural constraints
on the sequence of XML tags within marked-up documents.

Effect on KDT Process Flow Algorithm 4.6 (EstablishConceptualDocumentStructure)
is executed subsequent to completing the final clustering iteration. This algorithm requires
three input parameters: the focal intermediate text archive &, an alphanumeric label I that
describes the common theme of text documents therein, and the attribute support thresh-
old pas. Algorithm 4.6 instantiates a conceptual document structure for the intermediate

142

4.4 Post-Processing of Discovered Patterns

Algorithm 4.7 CreateSemanticallyMarkedUpTextArchive

Input: (a: IntTextArchive, §& ConceptualDocumentStructure)
Output: (4 SmuTextArchive)

1: & SmuTextArchive := .create() // initialize output smu. text archive
2: for all i: Integer :=1,2,. .., a.size() do // iterate through int. text documents
3: t: IntTextDocument := a.int TextDocument (7) // extract ith int. text document
4: T IntTextUnitLayer := t.int TextUnitLayer() // extract int. text unit layer
5: 1 SmuTextUnitLayer := I.create() // initialize output smu. text unit layer
6: for all j: Integer := 1,2,...,T.size() do // iterate through int. text units
7 @ Int TextUnit := T.intTextUnit(5) // extract jth int. text unit
8: i SmuTextUnit := null // declare output smu. text unit
9: if ©.concept() # null and 8.contains(.concept()) then // check for valid concept

10: 0 := G.create(ti.original TextUnit(), Gi.concept (),

11: §.validNamedEntities(ti.concept(), ii.intNamedEntities())) // text unit is marked-up

12: else

13: 0 := {.create(t.original Text Unit(), null, null) // text unit is not marked-up

14: end if

15: f.appendSmuTextUnit (i) // append new smu. text unit

16: end for

17 t: SmuTextDocument := t.create(t.textDocument (),) // create output smu. text document

18: a.appendSmuTextDocument(t) // append smu. text document

19: end for

text archive under consideration, as introduced in this subsection. The result constitutes
input to semantic XML tagging, which is performed in the final post-processing step of
both the knowledge discovery process and the batch-oriented knowledge application pro-
cess. Hence, the domain-specific conceptual document structure is persistently stored for
future usage.

4.4.3 Semantic XML Tagging of Text Documents

The post-processing step of our framework-specific knowledge discovery