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ging the Text Document ťE1 . . . . . . . . . . . . . . . . . . . . . . . . . . 145
4.31 Line-Numbered, Semantically Marked-Up XML Document Created by Tag-

ging the Text Document ťE4 . . . . . . . . . . . . . . . . . . . . . . . . . . 146
4.32 Summary of Domain Knowledge Recommended for Incorporation into the

DIAsDEM Knowledge Discovery Process . . . . . . . . . . . . . . . . . . 153

6.1 Four Sentences Illustrating the Types of XML Tag Names w.r.t. Markup
Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.2 German Commercial Register Entries and English Translations . . . . . . . 183
6.3 Overview of Text Archives Used in the Commercial Register Case Study . 184
6.4 Named Entity Types Extracted in the Commercial Register Case Study . . 186
6.5 Summary of Pattern Discovery in 12 Clustering Iterations in the Commer-

cial Register Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
6.6 Semantically Marked-Up XML Document Comprising the First Exemplary

German Commercial Register Entry . . . . . . . . . . . . . . . . . . . . . . 189
6.7 Semantically Marked-Up XML Document Comprising the Second Exem-

plary German Commercial Register Entry . . . . . . . . . . . . . . . . . . 190
6.8 Semantically Marked-Up XML Document Comprising the Third Exem-

plary German Commercial Register Entry . . . . . . . . . . . . . . . . . . 191
6.9 Results of the Semantic XML Markup Quality Assessment in the Commer-

cial Register Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
6.10 News Stories about U.S. Mergers and Acquisitions . . . . . . . . . . . . . . 196
6.11 Overview of Text Archives Used in the Reuters News Case Study . . . . . 197

viii



List of Tables

6.12 Named Entity Types Extracted in the Reuters News Case Study . . . . . . 198
6.13 Summary of Pattern Discovery in Eight Clustering Iterations . . . . . . . . 200
6.14 Semantically Marked-Up XML Document Comprising the First Exemplary

Reuters News Item . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
6.15 Semantically Marked-Up XML Document Comprising the Second Exem-

plary Reuters News Item . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
6.16 Semantically Marked-Up XML Document Comprising the Third Exem-

plary Reuters News Item . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
6.17 Results of the Semantic XML Markup Quality Assessment in the Reuters

News Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

ix





List of Algorithms

4.1 DecomposeAndTokenizeTextDocuments . . . . . . . . . . . . . . . . . . . . 79
4.2 ExtractNamedEntities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.3 LemmatizeAndDisambiguateWords . . . . . . . . . . . . . . . . . . . . . . 86
4.4 PerformClusteringIteration (Outline) . . . . . . . . . . . . . . . . . . . . . 132
4.5 PerformClusteringIteration (Complete) . . . . . . . . . . . . . . . . . . . . 138
4.6 EstablishConceptualDocumentStructure . . . . . . . . . . . . . . . . . . . 142
4.7 CreateSemanticallyMarkedUpTextArchive . . . . . . . . . . . . . . . . . . 143
4.8 CreateSemanticallyTaggedXmlDocuments . . . . . . . . . . . . . . . . . . 147
4.9 Generic KDT Process Flow for the Knowledge Discovery Phase . . . . . . 149
4.10 PerformClassificationIteration . . . . . . . . . . . . . . . . . . . . . . . . . 151
4.11 Generic KDT Process Flow for the Knowledge Application Phase . . . . . 151





Abstract

Facing ever increasing volumes of computer-accessible textual data, semantic XML tag-
ging of text archives creates value by providing embedded metadata. In this work, names
of semantic XML tags explicitly convey informal metadata by concisely describing con-
cepts that domain experts typically associate with marked-up text units, which represent
structural document parts (e.g., sentences or paragraphs). Optionally, attributes of se-
mantic XML tags make explicit named entities (e.g., names of companies) occurring in
marked-up text units. The markup syntax is defined in a concept-based XML document
type definition, and its meaning is informally specified in the DTD documentation.

Organizations benefit from exploiting semantic metadata in two broad ways. Firstly,
semantic XML markup tends to improve the effectiveness and efficiency of information
retrieval. Secondly, semantic XML markup facilitates applications that leverage semantic
metadata in texts, such as document warehousing and information integration.

How to employ knowledge discovery techniques for transforming domain-specific text
archives into semantically marked-up XML documents? This research objective is ad-
dressed by (i) establishing a conceptual framework for semantic XML tagging of domain-
specific text archives, (ii) developing a research prototype that implements the entire
framework, and (iii) evaluating the markup quality by processing real-world text archives.

In phase one of the two-phase DIAsDEM1 framework, an interactive knowledge dis-
covery process discovers and semantically labels concepts occurring at the text unit level
of plain texts, derives a concept-based XML document type definition based on identified,
frequently occurring concepts and prevailing named entity types, as well as semantically
tags text documents to enable quality assessment. In the second phase termed knowl-
edge application, large volumes of thematically similar text documents are automatically
tagged by utilizing the classification knowledge acquired in phase one.

Subsequent to extensive text pre-processing, the knowledge discovery process iteratively
groups text units based on content similarity to discover both specific and general, as well
as more and less frequently occurring concepts. In each iteration, a clustering algorithm is
selected, parameterized, and executed. Framework-specific cluster quality criteria are em-
ployed to distinguish between qualitatively acceptable and unacceptable text unit clusters.
Acceptable clusters reduce the input data of the next iteration. They are automatically
labeled with default names, which are refined by domain experts. Ultimately, labels of
acceptable clusters serve as names of semantic XML tags.

1The framework for semantic XML tagging, the knowledge discovery process, and the prototype system
are named after the research project DIAsDEM supported by Deutsche Forschungsgemeinschaft.





Zusammenfassung

Angesichts der stetigen Zunahme elektronisch verfügbarer Texte generiert die semantische
XML-Auszeichnung von Textarchiven Mehrwert durch direkte Einbettung von Metadaten.
In dieser Arbeit bezeichnen Namen semantischer XML-Textmarken als explizite und in-
formelle Metadaten sehr konzise Konzepte, die Experten des Fachgebiets typischerweise
mit den ausgezeichneten strukturellen Texteinheiten (z.B. Sätze oder Absätze) assoziieren.
Attribute von XML-Textmarken enthalten optional benannte Entitäten (z.B. Personen-
namen), die in ausgezeichneten Texteinheiten erwähnt werden. Die Syntax der Ausze-
ichnung ist in der konzeptuellen XML-Dokumenttypdefinition festgelegt, während deren
inhaltliche Bedeutung informell in der DTD-Dokumentation spezifiziert ist.

Organisationen profitieren von der Verwertung semantischer Metadaten in zweierlei
Hinsicht. Die semantische XML-Auszeichnung zielt erstens auf eine Verbesserung der
Effektivität und Effizienz von Information-Retrieval-Systemen ab. Zweitens werden An-
wendungen unterstützt, die semantische Metadaten in Texten verwerten. Beispiele hierfür
sind Applikationen des Document Warehousing und der Informationsintegration.

Sind Methoden der Wissensentdeckung zur Transformation fachspezifischer Textar-
chive in semantisch ausgezeichnete XML-Dokumente einsetzbar? Dieses Forschungsziel
wird durch (i) Spezifikation eines konzeptionellen Bezugsrahmens für die semantische
XML-Auszeichnung fachspezifischer Textarchive, (ii) Entwicklung eines den gesamten
Bezugsrahmen unterstützenden Prototypen und (iii) Evaluation der Auszeichnungsquali-
tät durch Verarbeitung real existierender Textarchive addressiert.

Die erste Phase des zweiphasigen DIAsDEM2 Bezugsrahmens ist ein interaktiver Wis-
sensentdeckungsprozess, der auf Ebene der Texteinheiten Konzepte entdeckt und inhalts-
bezogen benennt, eine konzeptuelle XML-Dokumenttypdefinition aus häufig auftretenden
Konzepten und dominierenden benannten Entitäten ableitet sowie Textdokumente für die
Qualitätskontrolle semantisch auszeichnet. In der als Wissensanwendung bezeichneten
zweiten Phase werden Texte desselben Fachgebiets durch Anwendung des in der ersten
Phase entdeckten Klassifikationswissens automatisch ausgezeichnet.

Nach umfangreicher Vorverarbeitung der Texte segmentiert der Wissensentdeckungs-
prozess Texteinheiten entsprechend ihrer inhaltlichen Ähnlichkeit iterativ, um sowohl
spezielle und allgemeinere Konzepte als auch mehr und weniger häufig verwendete Kon-
zepte zu entdecken. Dazu wird ein Clustering-Algorithmus in jeder Iteration ausgewählt,
parametrisiert und ausgeführt. Bezugsrahmensspezifische Cluster-Qualitätskriterien wer-

2Der Bezugsrahmen für die semantische XML-Auszeichnung, der Wissensentdeckungsprozess und
der Prototyp sind in Anlehnung an das von der Deutschen Forschungsgemeinschaft geförderte
Forschungsprojekt DIAsDEM benannt.



Zusammenfassung

den angewendet, um qualitativ akzeptable von nicht akzeptablen Texteinheitssegmenten
zu unterscheiden. Die akzeptablen Segmente reduzieren einerseits die Eingabedaten der
nächsten Iteration und werden andererseits automatisch mit Namensvorschlägen etiket-
tiert, deren Bezeichner anschließend von Experten des Fachgebiets verfeinert werden.
Diese Bezeichner entsprechen letzlich den Namen der semantischen XML-Textmarken.

xvi
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1 Introduction

We are drowning in information but starved for knowledge.
—John Naisbitt (1982, p. 24)

How to add value to huge volumes of existing textual data? This work focuses on
one aspect of value creation: the enhancement of text documents by means of semantic
XML markup. Adopting an information systems perspective and taking a knowledge
discovery approach, we propose a novel framework for transforming large archives of
domain-specific text documents into semantically marked-up XML documents. To begin,
we briefly elaborate on the observed abundance of textual data and associated problems
in the next section. In Section 1.2, the pivotal term semantic XML markup is defined.
We discuss benefits of semantic XML markup in Section 1.3 to demonstrate the relevance
of this research. Subsequently, the research questions addressed in this work are raised
in Section 1.4. Finally, we describe the adopted research methodology in Section 1.5 and
outline the remaining chapters of this work in Section 1.6.

1.1 The Abundance of Text

Companies, non-profit organizations, as well as public authorities create, store, and update
vast, continuously growing volumes of computer-accessible data. According to Lyman and
Varian (2003), about five exabytes (i.e., 5 · 1018 bytes) of new information were produced
on print, film, magnetic, and optical storage media in 2002. Gantz et al. (2007) estimated
that the amount of digital information created, captured, and replicated in 2006 was 161
exabytes. The authors expect an increase in the annually added digital information from
161 to 988 exabytes between 2006 and 2010. Steadily falling prices for storage capacity
seem to be a major driving force behind this growth rate.

Unstructured Textual Data With respect to the degree of internal structure, database
and information retrieval researchers typically classify this huge amount of data into three
categories (e.g., Buneman et al., 1997; Halevy et al., 2003; Weiss et al., 2005, p. 2). Struc-
tured data, such as relational data, are constrained by a rigid, a priori fixed conceptual
schema. In contrast, semi-structured data (e.g., HTML files) can be informally charac-
terized as “schemaless” or “self-describing” (Abiteboul et al., 2000, p. 11). Unlike the
first category, semi-structured data do not adhere to a rigid, explicitly specified schema.
Nevertheless, they do exhibit some structure and may implicitly adhere to a loose schema
(Wang and Liu, 2000, p. 353). Finally, unstructured data adhere neither to a loose nor to
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a rigid schema definition. Textual content (cf. Feldman and Sanger, 2007), images, audio
files, and video sequences are examples of unstructured data.

The written word has been an important means of human communication for centuries.
According to Dörre et al. (2001, p. 465), unstructured data constitute at least 90% of the
data centrally managed by corporate information technology departments. Plain texts
and files, which can easily be transformed into texts using, for instance, optical charac-
ter recognition techniques, appear by far to be the largest proportion of the data stored
in corporate information systems. Sullivan (2001, p. 84) estimated that up to 80% of
business information consists of unstructured text, including important free-form texts
like archived business letters, e-mails, technical handbooks, annual reports, and project
memos. In addition to in-house repositories, the World Wide Web is another tremendous
resource of textual, business-related content (cf. Hackathorn, 1999, pp. 3–25). Both in-
ternal and public text archives are without doubt a major source of codified knowledge,
which potentially serves as a basis for creating sustainable competitive advantages.

Tackling Information Overload Despite, or rather due to, this plethora of textual data,
humans often desperately struggle to find relevant information when it is needed to fulfill
their duties and responsibilities. This widely recognized phenomenon is termed informa-
tion overload (cf. Edmunds and Morris, 2000; Hurst, 2007). According to Farhoomand
and Drury (2002, p. 127), information overload can be characterized in two broad ways:
Losee (1989) defined information overload as the receipt of more information than needed
or desired to function effectively and to further individual or organizational goals. Alter-
natively, Schick et al. (1990) emphasized that information overload may occur if the in-
formation processing demand on individuals exceeds their respective processing capacity.
Despite the lack of a universally agreed upon definition, studies indicate that manage-
rial information overload is a widespread issue (cf. Reuters Business Information, 1996;
Farhoomand and Drury, 2002). It often results in personal frustration, delays decisions,
and causes economic losses due to the time wasted in trying to locate relevant information.
Obviously, “more information is not always better” (Case, 2002, p. 289).

Due to the rapid growth of text repositories and the resulting demand for information
overload reduction, information retrieval and knowledge discovery in textual databases
have become active research fields in the past decade. Information retrieval denotes
the activity of locating and presenting mainly textual information that is relevant to a
user-specific information need expressed as a query (Korfhage, 1997, p. 324). The term
knowledge discovery in textual databases was coined by Feldman and Dagan (1995) and
denotes the application of knowledge discovery techniques to textual, instead of struc-
tured, data. Knowledge discovery in databases (KDD) aims at extracting previously
unknown, statistically valid, and actionable knowledge from data (Frawley et al., 1991;
Fayyad et al., 1996b). KDD combines various methods from statistics, machine learning,
artificial intelligence, and database research in a unifying, process-centric framework.

Many large archives do not contain texts covering a variety of topics, but instead com-
prise domain-specific documents of relatively homogeneous content. Examples of this
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kind of text collection are financial news, industry-specific new product announcements,
quarterly reports to shareholders, and regulatory filings. Furthermore, content-based text
classification techniques (cf. Sebastiani, 2002; Feldman and Sanger, 2007, pp. 64–81) al-
low for the extraction of documents featuring specific topics from heterogeneous archives.
Announcements of stock repurchase programs could, for instance, be extracted from a
continuous stream of general business news and stored in a separate text archive.

Although focusing on the same central topic, documents in a thematic collection tend
to cover a variety of specialized, but nevertheless frequently recurring, subtopics at finer-
grained text structures. Furthermore, documents in thematic archives often describe
similar facts (e.g., resignation of the company’s chairman) about different persons or ob-
jects (e.g., resigning chairmen of specific companies) at the sentence or paragraph level.
If domain-specific documents share an implicit thematic structure, their internal subject
matters along with referenced persons or objects can be explicated by annotating the text
accordingly. Electronic text is typically annotated by inserting so-called markup codes.
For instance, all sentences mentioning the resignation of chairmen could be annotated with
the content-descriptive markup code ResignationOfChairman. In addition, this code
may be extended to reveal details of the actual resigning manager (e.g., Person="Name:
Barry Bankrupt"). Markup adds value to archives by conveying additional, queryable in-
formation about the marked-up text passages. In particular, content-descriptive markup
facilitates highly focused information retrieval and thus alleviates information overload.
We propose a new framework for the fine-grained, content-descriptive markup of text
documents that exploits the above-mentioned particularities of domain-specific text docu-
ments.

1.2 Defining Semantic XML Markup

Before introducing our notion of semantic text annotation, we concisely explain the term
markup. Subsequently, key properties of the Extensible Markup Language (XML) are
summarized because semantically marked-up texts are stored as XML documents within
our framework. Finally, we define semantic XML markup for the scope of this work.

Markup In the pre-electronic publishing process, copy editors marked up manuscripts
by adding handwritten directions for the typesetter regarding, for instance, the desired
type fonts, their sizes, and spacings (Barron, 1989, p. 4). Taking a broader perspective,
Coombs et al. (1987, p. 934) identified punctuational markup (e.g., ending sentences with
full stops) and presentational markup (e.g., numbering pages) as the two main forms of
traditional markup used directly by authors. In both cases, scribal markup always clarifies
a written expression. Markup is not part of the textual content itself, but rather reveals
additional information about the marked-up text.

As the automation of typesetting and layout advanced, the meaning of markup was
extended as well. At that time, the term covered various kinds of markup codes, or markup

3
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Descriptive MarkupProcedural Markup

Markup in Text Documents

Example: LeftIndentation Length="1cm"

Example: Emphasize Example: Chapter Example: PressRelease
Semantic MarkupStructural MarkupPresentational Markup

Figure 1.1: Taxonomy of Markup in Text Documents

languages, that were inserted into electronic text to trigger particular text processing
functions (see Burnard, 1995, p. 42). Generalizing from the publishing domain, Burnard
defined markup as “any means of making explicit an interpretation of text.” A markup
language may hence be no more than a loosely accepted set of markup conventions for
encoding a specific text collection. However, Burnard underlined that markup languages
must specify the names of mandatory and optional markup elements, their syntactical
distinction from the text to be marked up, and the meaning of markup elements.

The term metadata is often informally defined as data about data (e.g., see Geroimenko,
2004, p. 94). In particular, this term refers to data that describe specific properties
of other data, such as their meaning, source, validity, or data type. Using a markup
language, metadata are added to a text document by direct insertion of markup codes,
or markup tags, at the respective places within the document (cf. Geroimenko, 2004,
pp. 91 and 94). Markup thus conveys metadata about the tagged text passages, which
are typically surrounded by a start and a matching end tag.

Although criticized, for example, by Renear (2000) and Piez (2001), markup languages
are traditionally categorized into procedural markup and descriptive markup based on
the characteristics of the metadata they convey (Goldfarb, 1981). The former exactly
specifies system-specific processing functions to be performed on the marked-up text.
In contrast, descriptive markup describes logical text elements by marking text passages
with mnemonic tags that best characterize them. Instead of giving processing instructions,
descriptive and therefore system-independent markup rather represents metadata about
the logical structure of documents or the meaning of tagged content.

Maler and Andaloussi (1996, pp. 93–103) identified presentational, structural, and
content-based text components that should be recognized during the development of spe-
cific markup languages, so-called document type definitions, for text documents. Analo-
gously, we subdivide descriptive markup in text documents into presentational, structural,
and semantic markup. Figure 1.1 depicts this proposed taxonomy of markup. Unlike pro-
cedural markup, presentational markup does not include specific processing commands
for rendering content, but rather describes the desired visualization of marked-up text
passages on an abstract and system-independent level. Structural markup reflects the
logical structure of text documents by tagging text parts, such as headings, chapters, and
paragraphs (cf. Tompa, 1989; Heeman, 1992). Finally, semantic markup characterizes the
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"consultancy acquired by Giant Foo Corp."

Synonyms: Thought, Concept; Example:

Synonyms: Sign, Signifier;

Example: "the acquisition target"

Synonyms: Object, Subject, Idea;

Example: Innovative Boo Co.Referent

refers to

indirectly stands for
Symbol

Reference

creates in mind

Figure 1.2: Triangle of Reference (Modified from Ogden and Richards, 1994, p. 16)

surrounded text passages in terms of their actual content. Inserting semantic tags into
documents thereby aims at explicating the meaning of marked-up text.

Semantics Semantics has been the subject of thought in philosophy, linguistics, psychol-
ogy, artificial intelligence, and computer science for decades, if not centuries. Despite the
generally accepted conception that semantics concerns the relationship between linguistic
expressions and their meanings, there exists a long-standing academic dispute over the
question of explicating this relation (Gärdenfors, 2000, p. 151). In linguistics, semantics
denotes the study of meaning communicated through language (Saeed, 2003, p. 3). The
difficulty in defining the meaning of meaning has resulted in various schools of linguistic
thought on semantics (Goddard, 1998, pp. 6–11). In computer science, for example, the
notion of data semantics is a matter of discussions among scholars (Sheth, 1996). In arti-
ficial intelligence, the representation of semantics in machine-processable data structures
is a fundamental research area (Woods, 1975; Sowa, 1991; Fensel, 2004).

Creating and representing meaning via signs and symbols is the subject of semiotics
(Chandler, 2002, pp. 2–7). Swiss linguist Ferdinand de Saussure (1857–1913) and Ameri-
can philosopher Charles S. Pierce (1839–1914) are regarded as the co-founders of this
academic discipline. In the semiotic sense, signs might, for example, take the form of
text, images, or sound. The semiotic approach to semantics has been adopted in, for in-
stance, linguistics (Goddard, 1998, pp. 10–11), knowledge representation (Maedche et al.,
2003, pp. 318–325), as well as library and information science (Mai, 2001). Instead of
questioning ‘what meaning is’, Goddard emphasized, semioticians scrutinize ‘how mean-
ing is conveyed’ in communication. First published in 1923, Ogden and Richards (1994,
pp. 1–32) illustrated the semiotic relationship between a symbol, its mental reference, and
the real-world referent by the triangle of reference depicted in Figure 1.2.

Whenever humans communicate about actually existing subjects, objects, or ideas (i.e.,
referents), they make use of symbols like gestures, words, or sentences. Even entire
documents can be regarded as a single sign (Mai, 2001, p. 603). As the triangle of reference
indicates, there is no direct semantic relationship between symbols and their referents.
Instead, the meaning associated with a symbol is indirectly conveyed via a reference,
or concept, created in the recipient’s mind. Humans mentally grasp an understanding
of communication symbols by interpreting them in context and by considering available
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background knowledge. Only concepts formed by interpretation are mentally linked to
the respective referents in reality. The meaning of a text document is thus conveyed via
concepts, which are first invoked in the reader’s mind and thereafter associated with real-
world entities and issues featured in the text. However, the mental process of concept
formation is a matter under academic discussion (Staab, 2002, p. 85).

Semantic Markup Since we adopt the semiotic approach to meaning, semantic markup
reflects concepts that adequately educated domain experts typically associate with tagged
text passages. Resembling thematic markup (cf. Bayerl et al., 2003a), semantic markup
provides a short, concept-based summary of topics, issues, and subject matters covered in
tagged content. Abstract descriptions, as Woods (1991, p. 48) noted, are a useful way of
representing concepts. Our notion of semantic markup is exemplified by the semantic tag
AcquisitionAnnouncement that marks up the sentence ‘Exampleville-based Giant Foo
Corp. announced Friday it will acquire Innovative Boo Co. headquartered in Somewhere
City for 2 million dollars.’ This tag concisely summarizes the annotated text on an
abstract level by making explicit the concept ‘acquisition announcement’.

Rather than disambiguating the word sense of single terms (cf. Manning and Schütze,
1999, pp. 229–263), we focus on semantic markup that represents metadata about text
units comprising at least a few words. Text units reflect the logical structure of text
and represent structural document parts (e.g., chapters, paragraphs, or sentences). In
this work, a text unit represents the textual content of an arbitrary structural document
part that comprises at least two consecutive words. The granularity of semantic markup
is thus determined by appropriately choosing the granularity of text units. Fine-grained
semantic markup may require text units corresponding, for example, to sentences whereas
coarse-grained semantic tags might necessitate text units comprising entire paragraphs.
Text units resemble content objects introduced by DeRose et al. (1990, pp. 3–6). The
authors modeled text as an ordered hierarchy of nested, meaningful content objects (e.g.,
chapters, sections, subsections, and paragraphs).

Besides providing a concise and concept-based summary of text units, semantic markup
makes explicit the occurrence of domain-specific named entities in annotated text units.
Named entities are specific instances of abstract classes or numerical expressions (Sekine
et al., 2002). For example, the string ‘Giant Foo Corp.’ instantiates the abstract class
‘company’. Henceforth, the term named entity type denotes an abstract class (e.g., person,
company, or product) or a generic numerical expression (e.g., date or share price). For
example, the literal ‘2 million dollars’ is an instance of named entity type ‘amount of
money’. Consequently, the semantic tag exemplified above may include the referenced
deal value as well: AcquisitionAnnouncement AmountOfMoney="2000000.00 USD".

Extensible Markup Language The Extensible Markup Language, abbreviated XML, is
a metalanguage for creating specific markup languages (Geroimenko, 2004, p. 195). The
term metalanguage emphasizes that XML is not a markup language itself, but rather
defines common properties of all XML-based markup languages. In particular, the Exten-
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sible Markup Language only comprises a set of syntactic rules for defining domain-specific,
special purpose, and XML-based markup languages, such as the Extensible Business Re-
porting Language (cf. Bergeron, 2003). First published in 1998, XML is an open standard
endorsed by the World Wide Web Consortium (2000). XML is a subset of the widely
accepted Standard Generalized Markup Language (SGML; ISO 8879, 1986).

During the initial design phase of XML, the World Wide Web Consortium paid par-
ticular attention to the following requirements: straightforward usage over the Internet,
support by a wide range of applications, compatibility with SGML, and above all sim-
plicity in creating both XML documents and software for processing them. These design
objectives have largely contributed to the rapid increase in popularity and adoption of
XML in the past years. For example, McComb (2004, p. 207) stated that the Extensi-
ble Markup Language “has gone from relative obscurity to virtual ubiquity in just a few
years.” Binstock et al. (2003, pp. 4–5) positioned XML as the definitive, if not the de facto
standard for transferring data between distinct pieces of software. “The entire computer
industry as a whole, including most of the text processing community, has adopted XML”,
according to Weiss et al. (2005, p. 18), “as its standard exchange format.” The successful
emergence of this metalanguage is also reflected in the considerable number of both native
XML and XML-enabled database systems (cf. Chaudhri et al., 2003).

An XML-based markup language is commonly defined by an XML document type def-
inition (DTD) and its documentation. Each DTD specifies the structure shared by and
the text components frequently occurring in the documents to be modeled (Geroimenko,
2004, pp. 42–43). Hence, a document type definition serves as a grammar for the under-
lying XML documents (Abiteboul et al., 2000, p. 38–45). It declares syntactically valid
markup by listing elements and attributes that are allowed to occur in valid XML docu-
ments. In addition, a document type definition may define a hierarchy of nested elements
or impose an ordering on the elements in valid XML documents. According to Abiteboul
et al., a DTD can thus serve, to a very limited extent, as a schema for the data repre-
sented by XML documents. The accompanying DTD documentation is essential because
it explicates the rationale behind elements of a markup language and therefore ensures
appropriate DTD use (Maler and Andaloussi, 1996, p. 313).

Semantic XML Markup Due to its flexibility, simplicity, and widespread support, we
employ the Extensible Markup Language to represent semantically annotated text docu-
ments. For the purpose of this work, semantic XML markup1 is defined as follows:

Definition 1 (Semantic XML Markup) Semantic XML markup denotes pairs of match-
ing XML start and end tags that enclose text units in documents conforming to the Ex-
tensible Markup Language. Names of semantic tags explicitly convey informal metadata
about the meaning of marked-up content by concisely describing concepts that domain

1Henceforth, the terms content-based and content-descriptive are used synonymously with semantic.
Furthermore, annotation is a synonym of markup. Moreover, the activity of inserting markup into
electronic text is synonymously referred to as marking up, tagging, or annotating text.
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Table 1.1: Excerpt of XML Document Containing Semantically Marked-Up Text

<BriefAcquisitionAnnouncement Company="Name: Giant Foo [AND] Name: Innovative Boo">

USA: Giant Foo to acquire Innovative Boo.</BriefAcquisitionAnnouncement>
<AcquisitionAnnouncement Company="Name: Giant Foo Corp.; Place: Exampleville [AND]

Name: Innovative Boo Co.; Place: Somewhere City" AmountOfMoney="2000000.00 USD">

Exampleville-based Giant Foo Corp. announced Friday it will acquire Innovative Boo Co. head-
quartered in Somewhere City for 2 million dollars.</AcquisitionAnnouncement><AnnualRevenues
Company="Name: Innovative Boo" AmountOfMoney="5300000.00 USD">Innovative Boo is an IT
consultancy with annual revenues of about 5.3 million dollars.</AnnualRevenues> “The acquisition
of Innovative Boo’s advanced business intelligence expertise adds a valuable new dimension to our
group” a Giant Foo spokesman said in a statement on Friday.

experts typically associate with marked-up text units. Optionally, attributes of semantic
tags make explicit named entities occurring in marked-up text units. The syntax of se-
mantic XML markup is defined in an XML document type definition, and the meaning of
semantic XML markup is informally specified in the accompanying DTD documentation.

Table 1.1 illustrates our notion of semantic XML markup. Sentences correspond to text
units, three of which are semantically annotated and one of which remains untagged. Each
semantically marked-up text unit is surrounded by two matching XML tags enclosed in
angle brackets. The concept-based summary of topics, issues, and subject matters covered
in tagged content is conveyed by the element name, which is part of XML start and end
tags (e.g., AnnualRevenues). Furthermore, most start tags have attributes whose names
correspond to domain-specific named entity types. Attribute values represent concrete
instances of named entity types identified in marked-up text units. For example, the at-
tribute name and attribute value pair Company="Name: Innovative Boo" makes explicit
the occurrence of the company ‘Innovative Boo’ in the annotated text. In this work, at-
tributes of semantic XML tags do not implicate relationships between extracted named
entities. They merely enumerate named entities that occur in semantically marked-up
text units.

Standard-conforming XML documents contain data and metadata in an easily process-
able plain text format. Despite a common misconception about so-called self-describing
XML documents, machine-readability does not imply that software is capable of auto-
matically ‘understanding’ the meaning of markup (Renear et al., 2002). In fact, XML
DTDs merely define the syntax of valid XML documents. They do not formally specify
the meaning of procedural, presentational, structural, or even semantic tags. Introduc-
ing a semantic continuum, Uschold (2003) distinguished between explicit and implicit, as
well as formal and informal specifications of semantics intended for either human or ma-
chine processing. Given an appropriate documentation regarding the meaning of markup
constructs (cf. Maler and Andaloussi, 1996, pp. 313–323), semantic XML markup as in-
troduced above is explicit and expressed in an informal manner. In contrast, implicit
semantics are shared by human consensus only whereas formally specified semantics are
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expressed in a formal notation for semantic representation (Woods, 1975, p. 45).

1.3 Benefits of Semantic XML Markup

Facing ever increasing volumes of computer-accessible textual data, semantically tagging
text archives adds value by providing embedded metadata about concepts and named
entities occurring in marked-up documents. Organizations benefit from exploiting se-
mantic metadata in two broad ways. Firstly, semantic XML markup tends to improve
the effectiveness and efficiency of humans in retrieving information that is relevant to
their specific information needs. Secondly, semantic metadata facilitates or perhaps even
enables additional, advanced, or automated text processing and analysis.

Retrieving Information Unlike plain texts, semantically annotated XML documents
are semi-structured data because marked-up text units are surrounded by XML tags
whose names explicitly map textual content onto content-descriptive concepts. Users may
thus take advantage of the documented DTD that defines all archive-specific concepts.
Resembling an archive-specific ‘table of contents’, each document type definition serves
as a ‘road map’ for browsing and querying the respective collection of XML documents
(Wang and Liu, 2000, p. 354). In addition to a conventional full-text search, users may
retrieve information from semantically tagged XML documents by specifying relevant
concepts and named entities occurring on the fine-grained level of text units.

From the semiotic perspective, users trying to locate information do not search for docu-
ments containing specific keywords (i.e., symbols). They rather look for documents that
deal with concepts (i.e., references) corresponding to their information needs. However,
classical models in information retrieval (IR) represent documents by a set of index terms
(Baeza-Yates and Ribeiro-Neto, 1999, p. 24). Consequently, these IR models only sup-
port keyword-based queries. Instead of merely relying on the presence or absence of index
terms, conceptual information retrieval aims at capturing the meaning behind words to
improve retrieval performance (Mauldin, 1991, pp. xvii). Focusing on domain-specific text
archives, both Mauldin as well as Osborn and Sterling (1999) reported improvements of
retrieval performance through concept-based search. Considering, for example, Table 1.1
on page 8, users of conceptual IR systems can search directly for documents mentioning
the concept ‘acquisition announcement’ instead of having to search for texts including
the index terms ‘acquisition’ and ‘announcement’. The latter full-text query might, for
instance, return irrelevant texts that ‘announce’ the completion of an ‘acquisition’ instead
of reporting on first-time public statements about acquisitions.

Furthermore, the relevance of retrieved documents can be increased if queries involving
domain-specific named entities are fully supported. Huffman and Baudin (1997) addressed
the problem of finding information about important entities, such as persons and consult-
ing skills, across a large semi-structured information space. The authors reported that
providing a structured search functionality for named entities dramatically improves the
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retrieval quality in comparison with full-text search. In addition, Thompson and Dozier
(1999) concluded that explicit name searching can improve the retrieval performance espe-
cially if a large proportion of queries contain personal names. Considering again Table 1.1
on page 8, semantic XML markup might be exploited by explicitly searching for text units
that feature the concept ‘acquisition announcement’ and mention the company ‘Giant Foo
Corp. based in Exampleville’.

Due to the extensive XML support by commercial and free software (cf. Chaudhri et al.,
2003; Melton and Buxton, 2006), conceptual information retrieval via semantic XML
markup is applicable in both academia and industry. Nevertheless, most XML query lan-
guages focus on numerical and short character data (Fuhr, 2003). Therefore, Fuhr and
Großjohann (2004) designed the query language XIRQL, which additionally implements
fundamental IR concepts, such as term weighting and relevance-oriented search, for ef-
fective information retrieval in text-centric XML archives. Query languages like XIRQL,
XML Fragments (see Carmel et al., 2003; Chu-Carroll et al., 2006), or NEXI (see Trotman
and Sigurbjörnsson, 2005; Kamps et al., 2006) aim at crossing the structure chasm (cf.
Halevy et al., 2003) in text-centric XML documents between the semi-structured gram-
mar imposed by XML tags on one side and unstructured textual content on the other.
Consequently, query languages for text-centric XML documents enable users to fully reap
the benefits of semantic XML markup by enabling (i) conceptual information retrieval
based on content-descriptive names of XML tags, (ii) explicit queries involving named
entities listed in attributes of XML tags, as well as (iii) full-text search in both marked-up
and untagged text units.

Moreover, a considerable body of IR research is devoted to retrieval models that combine
textual content with information on the structure of documents (Baeza-Yates and Ribeiro-
Neto, 1999, pp. 61–65). Structure-aware retrieval models become semantics-aware as well
if the granularity of structural document components corresponds to the granularity of
semantic markup. Navarro and Baeza-Yates (1997) proposed a retrieval model based
on proximal nodes that supports hierarchical index structures over text. Thereby, full-
text queries can be restricted to certain structural text components, such as chapters
or sections. Extra value is added to this retrieval model by marking up structural text
units with content-descriptive XML tags. In this case, users could, for instance, search
for paragraphs discussing the concept ‘acquisition announcement’ and mentioning the
company ‘Innovative Boo’.

Leveraging Semantics Applications that support the W3C-recommended Extensible
Style Sheet Language family are capable of converting XML documents into other for-
mats, like transformed XML documents or plain text files (Geroimenko, 2004, pp. 211–
215). For that reason, semantically tagged XML documents can also be considered as
an intermediate representation for content-based text analysis, conversion, or process-
ing. McComb (2004) illustrated the broad range of use cases for leveraging semantics in
business systems, which spans from enterprise application integration, Web services to
the Semantic Web. However, our notion of semantic XML markup primarily facilitates
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document warehousing, information integration, and Semantic Web applications:

1. The term document warehouse, according to Sullivan (2001, pp. 11–20 and 524), de-
notes an integrated repository of textual documents and associated metadata, which
is set up for providing text-based decision support. Tseng and Chou (2006) stressed
the importance of document warehousing and proposed a framework that combines
text processing with multi-dimensional OLAP techniques. Document warehouses
comprise various types of documents collected from multiple sources. Essential
content-descriptive features are automatically extracted from new documents to es-
tablish associative links between related content. Semantic markup obviously con-
stitutes an advanced starting point for efficiently extracting content-based features
because it explicitly identifies themes and named entities occurring in texts. During
document loading and pre-processing, however, semantic markup must be converted
into content-based metadata that meet warehouse-specific standards regarding syn-
tax and semantics. In particular, names of semantic XML tags denoting thematic
concepts must be unambiguously aligned with organization-specific terminology for
encoding metadata stored in the repository.

2. The final goal of information integration, as Hearst (1998b, p. 12) put it, is to better
serve the information needs of users by making disparate data sources work together.
Information integration is an inherently complex task that aims at physically or
logically providing access to complementary, yet distributed or heterogeneous, data
sources (Jhingran et al., 2002, pp. 555–556). In today’s economy that is “based on
a vast infrastructure of computer networks and the ability of applications to share
data with XML,” (Halevy et al., 2006, p. 13) emphasized that “data needs to be
shared appropriately between different service providers, and individuals need to
be able to find the right information at the right time no matter where it resides.”
Due to the abundance of textual content, increasing research efforts have been di-
rected towards integrating unstructured, semi-structured, and structured data. For
example, Bergamaschi et al. (1999), Somani et al. (2002), Grossman and Frieder
(2004, pp. 211–255), as well as Chakaravarthy et al. (2006) addressed this research
challenge. Kashyap and Sheth (2000, pp. 1–87) emphasized the critical role of se-
mantic, in particular content-dependent metadata in brokering information across
heterogenous data sources.

Semantic XML markup explicitly provides content-descriptive metadata. Thus,
embedded semantic XML tags along with a fully documented XML document type
definition may be leveraged to integrate semantically semi-structured XML archives
with related semi-structured or structured data. For example, announcements of
mergers and acquisitions, as exemplified in Table 1.1 on page 8, might be inte-
grated with a relational database providing detailed financial statements of compa-
nies. Analogous to document warehousing, syntax and semantics of disparate data
sources have to be aligned either manually or by employing existing schema match-
ing algorithms (e.g., cf. Aguilera et al., 2002; Poggi and Abiteboul, 2005; Tansalarak
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and Claypool, 2007; Do and Rahm, 2007).

3. Berners-Lee et al. (2001, p. 29) envisioned a“new form of Web content that is mean-
ingful to computers” and that “will unleash a revolution of new possibilities.” The
so-called Semantic Web strives for associating information published on the existing
World Wide Web with machine-understandable metadata about its meaning. Based
on content-descriptive metadata, semantic-driven applications can deliver superior
solutions for accessing information, managing knowledge, or doing business on the
Web (Sheth et al., 2002; Fensel et al., 2003, pp. 1–25). However, commercially viable
applications ultimately depend on the large-scale availability of semantically anno-
tated data (Handschuh and Staab, 2003a, pp. v–vii). Although mostly considered
as semi-structured data due to HTML encoding, Web pages typically lack explicit
semantic metadata about textual content.
Again, semantic XML markup may serve as a basis for efficiently augmenting text-

ual content with machine-understandable metadata for use on the Semantic Web.
This use case, nevertheless, requires the mapping of explicit, yet informal, semantic
XML markup onto a formal representation of meaning intended for machine process-
ing (cf. Uschold, 2003; Stuckenschmidt and Harmelen, 2005, pp. 3–61). Providing a
shared and common understanding of a domain, formal ontology languages are an
accepted means of representing formal semantics (McGuinness, 2003; Fensel, 2004).
Hence, concepts and named entities (i.e., semantic XML markup) can either be
mapped onto concepts listed in existing ontologies or may constitute pre-processed
input data to algorithms for learning formal ontologies from text (cf. Maedche, 2002;
Cimiano, 2006).

In addition, concepts and named entities made explicit by semantic XML markup may
serve as semantically enriched input data for the purpose of knowledge discovery in text-
ual databases (e.g., cf. Feldman and Dagan, 1995; Feldman and Sanger, 2007) and content
analysis (e.g., cf. Krippendorff, 2004). Finally, semantic XML markup constitutes ben-
eficial metadata in the context of integrating database and IR techniques for structured
document handling (e.g., see Sengupta, 2000; Zhang et al., 2001; Cui et al., 2003). For
example, Amer-Yahia et al. (2005) and Weikum (2007) discussed the necessity of truly
merging database and information retrieval technologies, which have evolved largely inde-
pendent of each other. Analogous to social tagging mentioned by Weikum (2007, pp. 26–
27), large volumes of real-world data, which are capable of bootstrapping joint database
and IR research efforts, can be generated by automatically transforming unstructured
texts into semi-structured, semantically tagged XML documents.

1.4 Research Questions

As discussed in the preceding section, semantic XML markup facilitates the retrieval,
integration, analysis, and utilization of textual content. Before organizations can reap

12



1.4 Research Questions

the benefits accrued from content-descriptive metadata, however, documents have to be
enriched by inserting high-quality, consistent semantic markup. This task poses a serious
obstacle, the semantic annotation bottleneck, to leveraging semantics in information sys-
tems. In principle, this obstacle can be overcome by manual, semi-automated, or entirely
automated annotation of text documents. In reality, the immense human efforts required
for manual annotation restrict the applicability of the first approach to a few archives of
limited size, but exceptional importance (Butler et al., 2000). Due to the costs and te-
dious efforts involved, humans understandably tend to prefer exploiting semantic markup
to creating it by manual annotation (Erdmann et al., 2001; Tallis et al., 2001).

The huge volumes of existing legacy textual data and continuously published text docu-
ments necessitate an approach to semantic XML markup that simultaneously minimizes
human involvement and provides high-quality markup. This challenge may be effectively
addressed by adopting the process-centric framework for knowledge discovery in textual
databases (Frawley et al., 1991; Feldman and Dagan, 1995; Fayyad et al., 1996b). Conse-
quently, the following primary research question is addressed by this work:

Can techniques for knowledge discovery in textual databases be employed to
convert large archives comprising domain-specific text documents of homoge-
neous content into semantically marked-up XML documents?

A knowledge discovery approach to semantic XML tagging requires the identification
of frequently occurring thematic concepts at the text unit level. In addition, discovered
concepts must be concisely described by semantic labels that reflect topics, issues, and
subject matters mentioned in respective text units. Furthermore, domain-specific named
entities have to be extracted from text units because they serve as attribute values of
semantic XML tags. Subsequently, an archive-specific XML document type definition has
to be derived, in which names of semantic XML tags correspond to labels of frequently
occurring concepts. On the basis of actually occurring concepts and named entities, text
files must be automatically transformed into semantically tagged XML documents that
adhere to the derived DTD. Finally, the markup quality has to be evaluated to assess the
statistical validity of the generated semantic XML markup. Consequently, the primary
research question stated above implies the following secondary research questions:

1. How to discover frequently recurring thematic concepts at the text unit level?

2. How to assign semantic, content-descriptive labels to identified thematic concepts?

3. How to extract domain-specific named entities from text units?

4. How to establish a domain-specific, concept-based XML document type definition
that reflects the thematic structure on the text unit level by enumerating frequently
occurring thematic concepts and associated named entity types?

5. How to automatically convert text documents into semantically annotated XML
documents by marking up text units according to the concept-based XML DTD?
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6. How to evaluate the quality of automatically created semantic XML markup?

We intentionally focus on marking up domain-specific archives comprising documents
of relatively homogeneous content, as opposed to general text collections. Thereby, the
chance of actually finding frequently recurring concepts among text units is sufficiently
high. Developing a document type definition always requires designers to limit the scope of
considered document types to avoid a“lack of commonality” (Maler and Andaloussi, 1996,
pp. 79–80). In addition, existing vocabulary collections compiled from domain-specific
languages for special purposes (Bowker and Pearson, 2002, pp. 25–41) may be utilized for
discovering thematic concepts. To ensure a high quality of semantic XML markup, domain
knowledge supplied by human experts is incorporated, if necessary and appropriate. Due
to the costs of utilizing expert knowledge, however, we focus on processing sufficiently large
text collections only. When tagging large archives, the valued benefits of automatically
creating semantic XML markup are likely to outweigh the initial costs of adopting an
inherently semi-automated knowledge discovery approach.

1.5 Research Methodology

A research methodology is a specific combination of process, methods, and tools that
are employed in conducting research (Nunamaker et al., 1991, p. 91). Different research
methodologies have been advocated for the field of information systems (Galliers, 1991).
To review this wide range, Galliers distinguished scientific, or empirical, (e.g., surveys)
from interpretivist (e.g., action research) approaches to information systems research.

Referring to March and Smith (1995), Hevner et al. (2004) argued that acquiring knowl-
edge in information systems involves two distinct, but complementary, research paradigms:
behavioral science and design science. Rooted in natural-science research, the former seeks
to develop and justify theories that explain or predict organizational and human phe-
nomena occurring in the context of information technology. The latter, problem-solving
paradigm of research is rooted in engineering. Design science seeks to create innovative
artifacts (e.g., ideas or products) that contribute to the effective and efficient employ-
ment of information technology in organizations. According to March and Smith (1995,
p. 253), behavioral or “natural science tries to understand reality”whereas “design science
attempts to create things that serve human purposes.”

Following the design-science paradigm, the research underlying this work was specifi-
cally conducted by adopting the systems development methodology advocated by Nuna-
maker et al. (1991). Systems development, as the authors emphasized, is a key ele-
ment in forming a well-grounded research program in information systems. This multi-
methodological approach to information systems research encompasses four interdepen-
dent research strategies: theory building, systems development, experimentation, and
observation. However, artifact development assumes a central role in this integrated
approach because it bridges theory building, which conceptualizes artifacts, and experi-
mentation/observation, which measures the impact of artifacts.
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Figure 1.3: Systems Development Research Process (Source: Nunamaker et al., 1991,
p. 98) and Specific Research Process

The systems development methodology comprises a generic research process (Nuna-
maker et al., 1991, pp. 97–101), which is depicted on the left side of Figure 1.3. As
indicated by solid arrows, this process is inherently iterative in nature and thus under-
pins the idea that artifact design is an iterative search process for satisfactory solutions
(Hevner et al., 2004, pp. 88–90). Once a new, creative, and important research question
is identified, theory building corresponds to constructing a conceptual framework that
must be useful in organizing ideas and suggesting actions. Systems development com-
prises three stages: developing the system architecture, system analysis and design, and
constructing the (prototype) system. Prototypes allow researchers to quickly assess the
feasibility of conceptualized solutions. After building the (prototype) system, it must be
thoroughly evaluated in the experimentation/observation phase. Evaluation results have
to be interpreted with respect to the established conceptual framework. Since systems
development is an evolutionary process, evaluation results are typically fed back to theory
building and the development stages or may even raise new research questions.

By means of dashed lines, Figure 1.3 additionally maps the generic systems development
research process onto the specific process adopted within this research. As depicted on
the right side of Figure 1.3, this specific process consists of three main phases. Concern-
ing theory building, the main contribution of this work is a novel conceptual framework
for semantic XML markup of domain-specific text archives. This framework represents
a knowledge discovery approach to semantic XML tagging. Constructing the conceptual
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framework addresses the first five secondary research questions raised in the preceding
Section 1.4. The systems development phase corresponds to designing and building a
research prototype that implements the entire conceptual framework. Obviously, pro-
totype development is an essential prerequisite for evaluating the proposed conceptual
framework. Subsequently, the quality of automatically created semantic XML markup
is evaluated by employing the prototype system to semantically annotate real-world text
archives. Insights from observing and evaluating the system are used to incrementally
refine both the framework and the prototype. The evaluation phase addresses the sixth
secondary research question raised in the preceding subsection.

1.6 Outline

How to employ knowledge discovery techniques for transforming domain-specific text
archives into semantically marked-up XML documents? This overall research objective
is henceforth addressed by (i) establishing a conceptual framework for semantic XML
tagging of domain-specific text archives, (ii) developing a research prototype that imple-
ments the entire framework, and (iii) evaluating the quality of semantic XML markup by
processing real-world text archives. The remainder of this work is organized as follows:

Theory Building Before discussing our approach to semantic XML tagging, the under-
lying discipline knowledge discovery in textual databases (KDT) has to be introduced.
Chapter 2 (Literature Review) thus gives an overview of knowledge discovery in texts
with emphasis upon the KDT process. In addition, basic techniques for pre-processing
and storing textual data as well as extracting named entities are briefly explained. Subse-
quently, research from three relevant areas is reviewed: concept discovery in textual data,
semantic text annotation, and schema discovery in marked-up documents.

An integrated overview on the approach taken shall be given before discussing details
of individual research issues. Therefore, Chapter 3 (DIAsDEM2 Framework) defines fun-
damental terminology and presents an introductory overview of our two-phase framework
for semantic XML tagging of domain-specific text archives. In phase one, an interactive
knowledge discovery process (i) discovers and labels concepts occurring at the text unit
level of plain texts, (ii) derives a concept-based XML document type definition on the
basis of identified concepts and prevailing named entity types, as well as (iii) semantically
tags all text documents to enable an assessment of markup quality. In the second, rather
application-oriented phase of our framework, large volumes of domain-specific text docu-
ments are automatically tagged by utilizing classification knowledge acquired in phase
one.

Simultaneously providing high-quality semantic XML markup and reducing human ef-
forts requires a dedicated knowledge discovery solution. Chapter 4 (DIAsDEM Knowledge

2The framework for semantic XML tagging, the knowledge discovery process, and the prototype system
are named after the research project DIAsDEM supported by Deutsche Forschungsgemeinschaft.

16



1.6 Outline

Discovery Process) contributes to theory building by proposing a specific knowledge dis-
covery process for the semantic XML annotation of text documents, which constitutes
phase one of our conceptual framework. Chapter 4 provides details about pre-processing
textual data, searching for patterns (i.e., classification knowledge), and post-processing
discovered patterns. Concretely, solutions are suggested for the following research ob-
jectives: Identification of frequently occurring concepts at the text unit level, extraction
of named entities from text units, semantic labeling of discovered concepts, as well as
establishing a concept-based XML DTD, and converting training texts into semantically
marked-up XML documents. Finally, the chapter discusses the challenge of balancing the
need for KDT process automation with the required incorporation of domain knowledge.

Systems Development To experimentally evaluate the framework specified in Chap-
ters 3 and 4, a functional prototype system must be implemented that supports all fea-
tures of the DIAsDEM framework for semantic XML tagging of domain-specific text
archives. To that end, Chapter 5 (DIAsDEM Workbench) gives an overview on the pro-
totype system developed as an integral part of this research. Chapter 5 outlines system
requirements and describes the architecture of DIAsDEM Workbench. Subsequently,
the core functionality of this research prototype is explained.

Experimentation/Observation Ultimately, the applicability of our framework can only
be verified in case studies involving real-world text archives. Therefore, Chapter 6 (Ex-
perimental Evaluation) initially establishes an evaluation schema for assessing the quality
of semantic XML markup. Specifically, the overall markup quality is determined by ap-
propriately assigned semantic XML tags and correctly extracted named entities.

Competitive intelligence denotes both the process of conducting a competitive analysis
and the resulting actionable information (Herring, 1988, p. 5). Particularly, competitive
analysis is a phase in the strategic management process. This phase covers the system-
atic and legal collection, storage, and analysis of publicly available information about
current and potential competitors, other stakeholders, and the environment to anticipate
trends and strategic moves (Winkler, 2003, pp. 4–5). A successful competitive analysis
strongly depends on leveraging computer-accessible texts about trends and stakeholders.
For example, Sullivan (2001, pp. 407–436) and Chen et al. (2002) consistently stressed
the importance of knowledge discovery methods in the competitive intelligence field.

For that reason, we selected real-world archives from the competitive intelligence domain
to assess the quality of automatically created semantic XML markup. In Chapter 6, two
case studies of transforming text archives into semantically marked-up XML documents
are thus described. We processed a collection of German Commercial Register entries
in the first case. English news items about United States mergers and acquisitions were
semantically annotated in the second case study.

Looking Forward Chapter 7 (Conclusions) summarizes the contribution of this work
and indicates promising research challenges to enhance the conceptual framework and
thereby improve the capabilities of DIAsDEM Workbench.
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This chapter sets our research in the context of related work. Firstly, Chapter 2 introduces
the research area of knowledge discovery in textual databases and surveys important text
processing techniques from two other relevant disciplines. Secondly, this chapter outlines
the state of research on concept discovery in text documents, semantic text annotation, as
well as schema discovery in marked-up documents. The chapter summary differentiates
our objectives and our chosen approach from related work.

Research into identifying concepts in text documents is highly related to semantic XML
markup on an abstract level because semantic markup, as defined in Section 1.2, explicates
concepts that domain experts typically associate with marked-up text units. Research
on semantic text annotation offers various notions of semantic markup and above all
distinct techniques for actually annotating documents, which are surveyed in detail as well.
Furthermore, research into deriving a conceptual schema from marked-up documents is
relevant because our framework outputs a concept-based XML document type definition.
In addition, related work affecting only specific aspects of our conceptual framework (e.g.,
cluster labeling) is discussed in the respective chapters.

2.1 Storage, Retrieval, and Analysis of Textual Data

Since the DIAsDEM framework adopts a knowledge discovery approach to semantic XML
tagging, the underlying discipline is introduced in the next subsection. The following two
subsections survey highly relevant methods developed by the information retrieval and
information extraction research community, respectively.

2.1.1 Knowledge Discovery in Textual Databases

Feldman and Dagan (1995) coined the term knowledge discovery in textual databases
that refers to applying knowledge discovery techniques to textual, instead of structured,
data. Within the underlying discipline of knowledge discovery in databases, the nontrivial
process of identifying implicit, previously unknown, statistically valid, and actionable
patterns in data constitutes the object of research (Frawley et al., 1991; Fayyad et al.,
1996b). A pattern is an expression in some language that describes a specific subset of
data without exhaustively enumerating all facts or that represents a model applicable to
a data set (Fayyad et al., 1996a, pp. 40–41). Before elaborating on knowledge discovery
in detail, three important terms remain to be delineated for the scope of this work.
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Data, Information, and Knowledge Typically stored in databases or flat files, data
henceforth denote a collection of facts, observations, or measurements (Fayyad et al.,
1996b, p. 6). Textual data, and synonymously text, stand for a specific data category:
written or recorded spoken natural language. When referring to data, emphasis is placed
on the mere existence, processing issues, or syntactic properties of facts, observations,
or measurements. Therefore, their actual meaning is not considered at all. In contrast,
information is described as “data endowed with relevance and purpose” (Drucker, 1988,
p. 46) and“data that change individual decisions”(Hackathorn, 1999, p. 33). For example,
raw data is transformed into purposefully organized information by contextualization,
categorization, analysis, error removal, or summarization (Davenport and Prusak, 2000,
pp. 3–5). When referring to information, both semantic aspects and the subjectively
perceived relevance of data are thus emphasized.

Davenport and Prusak (2000, p. 5) pragmatically defined knowledge as “a fluid mix
of framed experience, values, contextual information, and expert insight that provides a
framework for evaluating and incorporating new experiences and information.” The au-
thors underlined that knowledge is mainly created by thinking or the interaction of human
beings. Besides residing in the human mind, knowledge is often embedded in documents
or organizational routines. Taking the KDD perspective, Fayyad et al. (1996b, pp. 8–9)
argued that patterns in data represent knowledge if they exceed a user-imposed, domain-
specific interestingness threshold. Within this work, however, knowledge encompasses
only patterns that are sufficiently interesting, meaningful, and relevant to affect organi-
zational processes. This notion is influenced by Hackathorn (1999, p. 33): “Knowledge
is information that changes organizational processes.” Consequently, patterns in data
constitute information if they make sense and are relevant to individuals only.

Knowledge Discovery In contrast to straightforward computations (e.g., of descriptive
statistics), knowledge discovery is a nontrivial process since it involves search or inference
algorithms to find new, previously unknown patterns in data (Fayyad et al., 1996a, p. 41).
To constitute knowledge, extracted patterns must be valid and actionable. The former
criterion requires patterns to be statistically valid, with a certain degree of certainty, on
data not utilized during the discovery phase (Vazirgiannis et al., 2003, p. 13). The latter
criterion stipulates that patterns must be ultimately understandable and potentially use-
ful to the human target group. The overall value of patterns is captured by the important
notion of interestingness (cf. Silberschatz and Tuzhilin, 1996; Geng and Hamilton, 2006)
that combines novelty, validity, simplicity, and usefulness. Silberschatz and Tuzhilin dis-
tinguished objective interestingness measures (e.g., statistical validity) from subjective
ones (e.g., unexpectedness and actionability). Independent of concretely applied meas-
ures, humans ultimately set the desired interestingness threshold, above which extracted
patterns are considered to be information or valuable knowledge.

Knowledge discovery in textual databases (KDT) is an inherently multi-disciplinary
research area, which borrows methods from statistics, machine learning, artificial intelli-
gence, and database research. In addition, analyzing unstructured text requires techniques
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Table 2.1: Knowledge Discovery in Textual Databases: Tasks and Applications

Knowledge Discovery Task Exemplary KDT Application

Exploratory Data Analysis Kohonen (2001, pp. 296–299) constructed a self-organizing map that
allows a visual, content-based exploration of 6,840,568 patent abstracts.

Descriptive Modeling Forman et al. (2006) employed a clustering algorithm to identify common
and emerging issues in textual, product-related help-desk records.

Predictive Modeling Weiss et al. (2005, pp. 172–178) described a text categorization system
that automatically assigns pre-defined topic names to newswire articles.

Discovering Rules Using an algorithm for association rules discovery, Feldman et al. (1998)
found frequently occurring concepts in 51,725 financial news stories.

Retrieval by Content Employing text classification based on decision trees, Lee and Lu (2003)
designed an adaptive recommender system for mobile news services.

from computational statistics, information extraction, statistical linguistics, and informa-
tion retrieval (Renz and Franke, 2003, pp. 2–5). According to Renz and Franke, knowledge
discovery in texts is different from KDD because it usually involves high-dimensional, but
rather sparsely populated, data sets. Furthermore, features of data sets representing text-
ual content are often semantically interrelated. For example, the two features representing
the terms ‘company’ and ‘firm’ are obviously related. However, after appropriately pre-
processing textual data to alleviate text-related particularities, standard KDD algorithms
may be employed to solve KDT tasks as well.

Based on the objectives of humans analyzing data, Hand et al. (2001, pp. 11–15) iden-
tified five generic knowledge discovery tasks. Firstly, exploratory data analysis refers to
the interactive, mostly visual exploration of massive data sets without having clear ideas
regarding the patterns to look for. Secondly, descriptive modeling aims at globally de-
scribing a data set or the respective process creating data. Thirdly, predictive modeling
is employed to fit a global model to a data set that permits the value of one attribute
to be predicted given values of other features. Fourthly, the goal of discovering rules is
to infer rule-based descriptions of interesting, but locally occurring, phenomena in large
data sets. Finally, retrieval by content supports users in finding data that are similar to
a given pattern of interest. Table 2.1 summarizes an application of each task.

The KDT Process As illustrated in Figure 2.1, discovering knowledge in textual data
is modeled as a multi-step process (cf. Fayyad et al., 1996b, pp. 9–11). This process is
inherently interactive and iterative since “one cannot expect to obtain useful knowledge
simply by pushing a lot of data to a black box” (Mannila, 1997, p. 42). Dashed lines in
Figure 2.1 indicate possible iterations and loops between any two phases. For example,
interpreting discovered patterns may cause the user to modify parameters and re-execute
a text mining algorithm. The process starts with setting the overall analysis goals and
ends with implementing discovered knowledge to change and improve, respectively, or-
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Figure 2.1: Process of Knowledge Discovery in Textual Databases (Adapted and Ex-
tended from Fayyad et al., 1996b, p. 10)

ganizational processes. The dotted line in Figure 2.1 implies that acting on identified
knowledge may raise new questions and necessitate further analyses.

After acquiring a thorough domain understanding, the objectives of discovering knowl-
edge are synchronized with goals pursued by the target group (Fayyad et al., 1996b,
p. 10). Subsequently, textual data required for the analysis is selected and/or sampled
from archives comprising available text documents. Thereafter, selected textual data is
cleansed and pre-processed. Besides standard KDD pre-processing procedures (e.g., re-
moving noise if appropriate), this phase includes various operations to transform text
into a numerical representation suitable for applying knowledge discovery algorithms.
Important pre-processing operations are introduced in Subsection 2.1.2. Subsequent to
pre-processing text, the transformation phase comprises data reduction and projection,
which strongly depend on the specific objectives of knowledge discovery. For example,
pre-processed textual data may be transformed by reducing the typically huge number of
features that may initially represent thousands of individual words. However, dimension-
ality reduction algorithms must preserve important semantic and domain-specific charac-
teristics of original text documents as much as necessary.

Although both words are often used interchangeably, text mining is not a synonym
for knowledge discovery in textual databases in this work. The former term describes
an important, but arguably not the most important, phase of the knowledge discovery
process. The text mining step encompasses three main activities. At first, the overall
objective (e.g., finding typical service calls to improve help-desk applications) must be
mapped onto a particular text mining method, such as clustering (Fayyad et al., 1996b,
pp. 10–11). Second is choosing and parameterizing a suitable text mining algorithm. For
instance, the k-means clustering algorithm may be selected to discover k = 100 typical
service calls. Thirdly, the chosen algorithm is executed to search for, or infer, ultimately
interesting patterns in pre-processed and transformed data. As depicted in Figure 2.1,
extracted patterns (e.g., k = 100 clusters) are interpreted and evaluated based on a priori
chosen interestingness measures. In this decisive phase, useless patterns are separated

22



2.1 Storage, Retrieval, and Analysis of Textual Data

from novel and interesting ones that constitute the desired knowledge. Evaluation results
often trigger iterations whereby preceding process steps are executed once again. Finally,
a successful knowledge discovery process is terminated by acting on extracted, novel, and
interesting patterns to attain the initial organizational objectives.

2.1.2 Information Storage and Retrieval

Information retrieval systems process text documents and requests for information by
identifying and subsequently retrieving documents in response to information requests
(Salton, 1989, pp. 229–231). Textual documents are retrieved based on their similarity to
an information need expressed as a query. To meet an information request, the similarity
between stored documents and a query is determined by comparing values of attributes
(i.e., content identifiers) that are attached to stored documents and the query. Content
identifiers attached to documents are known as descriptors, index terms, or keywords.

Document Pre-Processing By assigning content identifiers to documents (i.e., by in-
dexing), unstructured textual content is transformed into structured document surrogates
(Salton, 1989, pp. 275–277). Storing and successfully retrieving texts thus involves ex-
tensive pre-processing of documents to assign them adequate content identifiers. These
pre-processing techniques are highly applicable for discovering knowledge in textual data
(Renz and Franke, 2003, p. 4). The knowledge discovery approach to semantic XML
tagging pursued in this work is no exception to the rule. Baeza-Yates and Ribeiro-Neto
(1999, pp. 165–173) discussed five main operations for pre-processing text:

1. Lexical text analysis converts character-based textual data into a sequence of clearly
separated words, numbers, and punctuation marks. For example, multi-token words
(e.g., ‘news agency’) and sentence boundaries are identified during the tokenization
process (Manning and Schütze, 1999, pp. 123–131 and 134–136).

2. Eliminating stopwords means removing words that occur too frequently to be good
discriminators from the document-specific list of potential content identifiers. Mean-
ingless articles, prepositions, and conjunctions are stopword candidates because they
are typically useless for text retrieval due to their high frequency.

3. Stemming the remaining words is performed by replacing terms with their respective
root forms. Stemming algorithms (e.g., Porter, 1980a) reduce syntactical diversity,
but preserve the meaning of terms. For example, inflected verb forms (e.g., ‘acquired’
and ‘acquiring’) are substituted by their infinitives (e.g., ‘acquire’).

4. Selecting index terms refers to carefully choosing words or multi-word phrases that
finally serve as content identifiers for text documents. Index terms were manually
selected by domain experts in the past. Nowadays, algorithms exist that automati-
cally extract useful index terms from text (Moens, 2000, pp. 77–102).
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5. Constructing term categorization structures refers to establishing a controlled vo-
cabulary. For instance, thesauri (ISO 2788, 1986) provide a standard vocabulary
for consistent indexing, searching, and automatic query expansion. A thesaurus
includes domain-specific words along with related terms (e.g., synonyms).

Vector-Space Model Various mathematical models have been suggested to numerically
represent text (Baeza-Yates and Ribeiro-Neto, 1999, pp. 24–61). However, the vector-
space model introduced by Salton (1968, pp. 236–243) is an efficient document represen-
tation for information retrieval and knowledge discovery (Sullivan, 2001, pp. 328–337).

The vector-space model assumes a collection comprising n ∈ N text documents and a set
D = {d1, d2, . . . , dm} of m ∈ N distinct, a priori selected content identifiers and descrip-
tors, respectively (Salton and Lesk, 1968). Text document i (i = 1, 2, . . . , n) is modeled as
an m-dimensional property vector ti = [τi,1, τi,2, . . . , τi,m]. Coefficient τi,j (j = 1, 2, . . . ,m)
represents the weight of content descriptor dj in document i. Weight τi,j should reflect
the importance, the presumed value of content descriptor dj for retrieving text document
i (Salton and Buckley, 1988, p. 516). Consequently, the entire text collection is modeled
as an (n × m) matrix T = [t1, t2, · · · , tn]T. The rows of matrix T represent n document
vectors. Columns of matrix T correspond to m content descriptors.

According to Salton and Buckley (1988, pp. 516–517), term weighting involves three
components to ensure a high overall retrieval performance. The term frequency component
is solely based on the frequency of descriptor dj in text document i whereas the collection
frequency component depends on the frequency of dj in the entire collection. Additionally,
the normalization component accounts for varying document sizes in a collection. Salton
and Buckley therefore emphasized that creating a weighting scheme requires considering
vocabulary characteristics, the frequency of collection updates, and the variation of docu-
ment size. For average text collections, Baeza-Yates and Ribeiro-Neto (1999, pp. 29–30)
argued, the best known weighting schemes calculate weights by multiplying the normalized
term frequency ntf(i, j) of content descriptor dj in document i by the inverse document
frequency idf(j) of content descriptor dj in the collection:

τi,j = ntf(i, j) · idf(j) =
tf(i, j)

maxk=1,...,m tf(i, k)
· log

n

df(j)
(2.1)

In Expression 2.1, tf(i, j) denotes the frequency of descriptor dj in document i. Fur-
thermore, df(j) denotes the number of documents in the entire collection that contain
descriptor dj. Intuitively, the best index terms “occur frequently in individual documents
but rarely in the remainder of the collection” (Salton, 1989, p. 280). To balance these two
effects, weights computed according to Expression 2.1 increase if descriptor dj frequently
appears in text document i or if dj rarely occurs in the entire text archive T.

The popular vector-space model has many advantages for storing and retrieving textual
data. It is simple, fast, and offers a retrieval performance that tends to be superior to,
or almost as good as, alternative models (Baeza-Yates and Ribeiro-Neto, 1999, p. 30). A
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disadvantage is the assumed mutual independence of content descriptors. However, Baeza-
Yates and Ribeiro-Neto argued that this assumption is negligible for practical applications.
Since text is mapped onto a bag-of-content-descriptors representation, any information
concerning the ordering of occurring descriptors is intentionally disregarded. This fact
must be taken into account for specific knowledge discovery applications.

2.1.3 Information Extraction

Research in information extraction (IE) investigates how to identify facts of interest in
text documents (cf. Pazienza, 1997, p. v). Grishman (1997, p. 10) defined information
extraction as “identification of instances of a particular class of events or relationships in
natural language text” to extract relevant attribute values of the event or relationship.
The specification of one particular event or relationship is referred to as a scenario. Taking
a broader perspective, Moens (2006, p. 4) defined IE as the task of making unstructured
data sources “suitable for information processing tasks” by identifying, classifying, and/or
structuring specific information therein into semantic classes that are known in advance.
After retrieving relevant documents using IR systems, information extraction techniques
are capable of identifying a priori specified facts inside the documents (Cowie and Lehnert,
1996). In an information retrieval context, as Moens (2006, p. 13) emphasized, information
extraction techniques facilitate a highly focused retrieval.

Since information extraction aims at finding facts inside documents, only text passages
are analyzed in detail (cf. Moens, 2006, p. 7). In particular, IE algorithms attempt
to transform factual information into a structured representation by finding values for
predefined slots, or attributes, of scenario-specific templates (Manning and Schütze, 1999,
p. 376). An empty template comprises attribute names that correspond to important
features of the respective scenario. A filled template denotes the final, tabular information
extraction output, which represents a concrete scenario occurrence in terms of attributes
and their extracted values. The information extraction task of filling a priori defined
templates is related to identifying semantic concepts in text. Thus, representative research
projects on extracting relational data from texts are reviewed in Subsection 2.2.2.

Between 1987 and 1998, seven Message Understanding Conferences, abbreviated MUC-
1 through MUC-7, facilitated the application-oriented research on information extraction
from unstructured texts (Jackson and Moulinier, 2002, pp. 76–78). Sponsored by the
U.S. Defense Advanced Research Projects Agency (DARPA), researchers from academia
and industry were invited to solve several predefined information extraction tasks (e.g.,
extracting details of terrorist attacks) in a competitive environment. The availability of
real-world training and test documents allowed a rigorous evaluation of all solutions. The
quality of information extraction is assessed in terms of precision, recall, and metrics de-
rived thereof (Grishman, 1997, pp. 20–21). Precision is defined as the ratio of correctly
filled template slots and the total number of slots filled. In contrast, recall denotes the
percentage of correctly filled template slots to the total number of slot fillers in the respec-
tive text. Analogous to information retrieval, there exists a trade-off between precision
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and recall in IE as efforts to increase recall tend to worsen precision. The evaluation of
IE techniques is discussed by Moens (2006, pp. 179–197) in great detail.

After retrieving news items about corporate takeovers, for example, information extrac-
tion techniques are capable of extracting detailed data that explicate who acquired whom
for what price. An instantiated scenario template CorporateAcquisition hence contains
values filling the slots AcquiringCompany, AcquiredFirm, and MonetaryDealValue. By
employing appropriate IE algorithms, which are reviewed by Moens (2006, pp. 23–150)
as well as Feldman and Sanger (2007, pp. 119–145), the filled template CorporateAcqui-
sition: AcquiringCompany="Giant Foo"; AcquiredFirm="Innovative Boo"; Mone-

taryDealValue="2000000.00 USD" can be extracted from the press release illustrated
in Table 1.1 on page 8. Since named entities serve as slot fillers, recognizing them is an
important subtask of information extraction.

Named Entity Recognition According to Sekine et al. (2002), named entities (e.g.,
‘Giant Foo Corp.’ and ‘5.3 million dollars’) are specific instances of named entity types
that are either abstract classes, like ‘company’, or numerical expressions, such as ‘amount
of money’. Unlike complex events or scenario patterns (e.g., ‘corporate acquisition’),
abstract classes denote basic objects (e.g., ‘product’) or subjects (e.g., ‘person’). Sekine
et al. proposed a hierarchy of about 150 named entity types whose instances are likely
to occur in general news stories. In our framework, domain-specific named entities are
extracted from text units as they are potential attribute values of semantic XML tags.

Recognizing named entities requires extracting various types of proper names and spe-
cial expressions (Grishman, 1997, p. 15). The latter (e.g., telephone numbers and dates)
are typically identified by applying carefully handcrafted regular expressions (Manning
and Schütze, 1999, p. 131). Algorithms designed to extract and disambiguate proper
names often rely on various dictionaries, rules, and heuristics (e.g., Volk and Clematide,
2001; Navarro et al., 2003). Other approaches to recognizing proper names exploit tech-
niques from computational linguistics and machine learning to minimize costly human
efforts (e.g., Bunescu and Mooney, 2004; Turmo et al., 2006; Downey et al., 2007). Jack-
son and Moulinier (2002, p. 77) summarized that extracting proper names of persons,
companies, and places from English newswire texts “was more or less a solved problem”
in 1998. Feldman and Sanger (2007, p. 96) and Moens (2006, p. 203) argued analogously.

2.2 Discovering Concepts in Textual Data

Most automatic indexing techniques select natural language index terms directly from
documents to be indexed (Moens, 2000, pp. 77–102). Thereby, index terms in the form of
single words or multi-word phrases are assumed to appropriately reflect the subject mat-
ters of indexed documents. As introduced in Section 1.3, conceptual information retrieval
pursues a different approach by capturing the meaning behind often ambiguous words.
To that end, semantic concepts are assigned to documents instead of indexing selected
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natural language terms. Woods (1997, pp. 6–12), for instance, considered conceptual
indexing a better way to organize knowledge than classical, term-based indexing.

In the context of indexing, the term concept is standardized to denote a unit of thought
whose semantic content can be re-expressed by a combination of other and different con-
cepts (ISO 5963, 1985). In this section, however, the term concept, or synonymously
semantic concept, pragmatically denotes any abstract and unambiguous representation of
the meaning of textual content. This view corresponds to the notion of concepts adopted
by Loh et al. (2000), Nasukawa and Nagano (2001, p. 969), as well as Feldman and
Sanger (2007, pp. 6–7). In particular, semantic concepts are distinct from individual, of-
ten ambiguously used words. Unlike, for example, Thompson and Dozier (1999), identified
named entities (e.g., names of companies) are not considered to be concepts henceforth.

Before reviewing related research explicitly aimed at semantic text annotation in Sec-
tion 2.3, we subsequently survey research whose objective is to discover semantic concepts
in text documents. Although these techniques neither output semantically tagged XML
documents nor insert semantic annotations into text files, they are related to the main
research question pursued in this work. In general, identifying semantic concepts in text
documents is a prerequisite for their content-based markup. Therefore, we discuss rep-
resentative work in topic discovery, extraction of relational tuples from text, as well as
approaches to inferring taxonomies, thesauri, and ontologies from text documents.

2.2.1 Topic Discovery in Text Documents

Topics of text documents concisely characterize the subject matters, or themes, discussed
therein. Identifying document-specific topics hence corresponds to answering the ques-
tion of what the respective document is about. Hutchins (1997) discussed the notion of
aboutness, or topicality, in the context of subject indexing. According to Hutchins, it is
a common view that the aboutness of documents is expressed by index terms. Typically,
index terms are keywords and phrases that are significant indicators of the content and
thereby provide a thematic summary of the document. The traditional approach to in-
dexing thus requires human indexers who are capable of stating what a document is about
by formulating a summary and selecting good index terms.

Moens (2000, pp. 12–13) distinguished the intrinsic subject, aboutness, or topicality
of documents from their context-specific meaning. A document usually has a relatively
permanent and agreed upon aboutness whereas its concrete meaning depends on charac-
teristics of the particular communication context. Specifically, the meaning of documents
is determined by several cognitive factors like task, knowledge, or attitude of readers. The
objective notion of aboutness resembles semantic metadata, as defined in Section 1.2.

In our framework, names of semantic XML tags convey the meaning of marked-up text
units by summarizing concepts that domain experts typically associate with marked-up
content. Identifying topics in a collection of text documents is a related research question
because extracted topic descriptors may serve as semantic markup for the respective text
units. However, we only consider semi-automated and automated approaches to topic
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identification that are designed to discover new, previously unknown topics in an archive.
Thereby, we deliberately exclude manual techniques as well as the broad range of text
classification algorithms (cf. Sebastiani, 2002; Feldman and Sanger, 2007, pp. 64–81).
Unlike our exploratory framework, text classification is focused on assigning documents
to existing, pre-defined topic categories. Techniques for summarizing or abstracting text
documents (cf. Moens, 2000, pp. 133–154) are not discussed either because condensed,
but nevertheless rather lengthy, summaries cannot serve as semantic XML tags.

The aboutness of text documents can be determined at different granularity levels
(Moens, 2000, p. 25). On the one hand, overall topics characterize subject matters of the
entire text document. Subtopics represent subjects, or themes, of certain text passages
on the other hand. Following this observation, we subsequently survey representative
research into identifying overall topics at the text level. Thereafter, specific research into
discovering topics of more fine-grained text structures is discussed. Complementarily to
extracting individual topics, Subsection 2.2.3 surveys techniques for inferring complex
taxonomies, thesauri, and ontologies from concepts occurring in a text collection.

Topic Discovery at the Text Level Clustering, or unsupervised learning, is a common
approach to topic discovery. A clustering algorithm groups documents such that texts
assigned to the same cluster are more similar than texts assigned to different clusters (cf.
Jain and Dubes, 1988, pp. 1–6). Documents assigned to the same cluster are assumed to
cover similar topics (e.g., cf. Chin et al., 2006; Pons-Porrata et al., 2007), which neverthe-
less remain to be characterized in a content-descriptive and human-understandable way.
However, (semi-) automatically extracting the aboutness, or topicality, of documents is
not always the objective of text clustering. Finding groups of similar documents without
explicitly specifying their salient topics is often sufficient in exploratory data analysis.

Scatter/Gather is a cluster-based approach to browsing large document collections
(Cutting et al., 1992). Initially, the entire document collection is segmented (i.e., scat-
tered) into a small number of clusters, whose prevalent topics are visualized in the form
of content-descriptive summaries. On the basis of these cluster-specific topic descriptions,
the user selects one or more interesting clusters for further browsing. Subsequently, the
documents of all selected clusters are merged (i.e., gathered) to form a new sub-collection
of texts that constitutes the input to the next scatter/gather iteration. Cutting et al.
summarized the main topics of each cluster in a so-called cluster digest. A generated
cluster digest contains the titles of documents near the cluster centroid and a list of words
that occur most frequently in documents assigned to the respective cluster. Inspired by
Scatter/Gather, Agrawal et al. (2000) presented the interactive and iterative cluster-
ing algorithm C-Evolve, which, for efficiency reasons, directly generates cluster digests
instead of clustering the entire (sub-) collection of text documents. Cluster digests com-
prise a limited number of representative text documents to provide cluster descriptions.

After clustering a text archive to discover topics, Ertöz et al. (2004) characterized the
topicality of each cluster by extracting words occurring most frequently in the respective
texts. Analogously, Karypis and Han (2000b) as well as Dhillon and Modha (2001) selected
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the ten highest weighted features, which are typically keywords, in the centroid vector of
each text document cluster to summarize its aboutness. Describing salient topics in text
document clusters only on the basis of frequently occurring keywords is a common, but
by no means the most effective, solution. To that end, related work on cluster labeling is
discussed in detail in Subsection 4.4.1.

Based on the self-organizing map algorithm for unsupervised learning (Kohonen, 2001),
WEBSOM is another technique for thematically organizing large text collections (Kaski
et al., 1998; Kohonen, 2001, pp. 286–299). WEBSOM maps documents onto a two-
dimensional array of nodes (i.e., clusters) such that documents assigned to the same node
feature similar topics. Texts assigned to nearby nodes of the array are more similar than
texts assigned to distant map nodes. Hence, the two-dimensional document map provides
an intuitively understandable, graphical, and content-based segmentation of the entire
text archive. Some nodes of the map, so-called landmarks, are automatically labeled to
quickly provide insights into the topics discussed in texts assigned to the respective map
area (Kohonen, 2001, pp. 295–296). Landmark labels are words that frequently occur in
articles within the labeled map area and rarely elsewhere. Alternatively, the LabelSOM
algorithm may be utilized to automatically label the nodes of document maps (Rauber,
1999; Rauber and Merkl, 2003). Topic descriptions induced by LabelSOM comprise
features, typically keywords, of document vectors that are most relevant for their mapping
onto a particular node of the document map.

Another strain of research into topic discovery referred to as statistical topic modeling is,
for example, represented by Griffiths and Steyvers (2004) as well as Newman et al. (2007).
Both research groups employed a generative, probabilistic model for document collections
(i.e., latent Dirichlet allocation) proposed by Blei et al. (2003). This approach resembles
model-based clustering (cf. Han and Kamber, 2006, pp. 429) as it requires learning topic-
word and document-topic probability distributions for a text archive in an unsupervised
manner (Newman et al., 2007, p. 367). Statistical topic modeling simultaneously discovers
topics in text collections, characterizes topics by their most important words, and assigns
degrees of topic membership to documents. Newman et al. (2007, p. 369) emphasized the
necessity to manually assign meaningful labels to topics.

The research area of topic detection and tracking focuses on temporal aspects of event-
based topic discovery (cf. Allan, 2002). This research community aims at identifying
reports about distinct real-world events in a continuous stream of broadcast news stories.
Consequently, the input stream of news is initially separated into discrete stories (Allan,
2002, pp. 1–26). This important pre-processing task is related to discovering topics at the
text passage level discussed below. Thereafter, new topics are recognized in the stream of
separated news stories, which may, for instance, be triggered by a political event. Allan
et al. (2002, pp. 219–222) characterized topics by the most important keywords, named
entities, or noun groups. In parallel, all incoming follow-up news stories of known topics
are clustered into groups of stories discussing the same topic. Tracking topics refers
to identifying topic-specific follow-up reports on the basis of a few sample documents.
Essentially, topic detection and labeling algorithms (e.g., Ponte and Croft, 1997; Mori
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et al., 2006; Pons-Porrata et al., 2007) are fine-tuned to process continuous streams of
incoming text documents. They are not directly related to our work on semantic XML
markup because we assume the entire text archive of training documents to be accessible.

Topic Discovery at the Text Passage Level The above-mentioned techniques for iden-
tifying salient topics at the text level can also be applied to determine the aboutness of
a priori defined text passages. To that end, structural text units at the required gran-
ularity level (e.g., sections or paragraphs) are extracted from each text document prior
to topic identification. Unlike this straightforward approach to topic discovery at the
passage level, however, identifying the internal, rather fine-grained thematic structure of
documents requires discovering distinct topics within the text as well as segmenting the
text based on topic changes (Li and Yamanishi, 2003, pp. 521–522).

When retrieving information from collections of documents comprising a variety of
subtopics, the retrieval performance can be considerably improved by employing passage
retrieval strategies (Salton et al., 1993; Callan, 1994; Jiang and Zhai, 2006, p. 296). In-
stead of searching for complete documents, passage retrieval systems locate finer-grained
text segments that match a particular information need. To determine subtopical text
segments in long documents covering subjects of principal interest, Salton et al. (1996)
proposed computing the pairwise similarity between text segments of varying, pre-defined
length. Pairwise similarities of text segments exceeding a threshold are edge weights of
an undirected graph, and text segments are represented by graph nodes. Subsequently,
themes are identified by a graph-based clustering algorithm that extracts highly connected
subgraphs comprising at least three nodes. Salton et al. did not consider techniques for
labeling themes to characterize their subject matters.

TextTiling is a technique for structuring expository text documents into contiguous,
non-overlapping, multi-paragraph units covering the same subtopic (Hearst and Plaunt,
1993; Hearst, 1997). In particular, Hearst (1997) introduced the final TextTiling al-
gorithm for subdividing texts into subtopic segments, which identifies major topic shifts
based on lexical co-occurrence patterns. After tokenizing a text document, the algorithm
computes a similarity score for each pair of consecutive sentences. Subtopic boundaries
are inserted between adjacent text segments whose similarity score is a local minimum
with respect to the left and right neighboring scores. Hearst deliberately excluded the
question of characterizing, or labeling, subject matters of discovered subtopic segments.

Reynar (1999) introduced two algorithms for identifying topic boundaries without ad-
dressing the question of topic labeling either. The first algorithm is solely based on
analyzing word frequency statistics whereas the second algorithm utilizes features like the
occurrence of domain-specific cue phrases (e.g., ‘brought to you by’) or the repetition of
named entities to compute the likelihood of an existing topic boundary between two text
segments. Combining the TextTiling approach and previous work on text summariza-
tion, Mather and Note (2000) proposed an algorithm that first discovers topic boundaries
and then labels subtopic regions with frequently occurring noun phrases.

Li and Yamanishi (2003) emphasized that topic analysis consists of two main tasks:
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topic identification and text segmentation based on topic changes. To that end, Li and
Yamanishi proposed an unsupervised statistical learning approach based on a stochastic
topic model. After text segmentation, each identified subtopic block is labeled with words
that are closely related to the prevailing topics therein. In this context, Jiang and Zhai
(2006) presented a method based on hidden Markov models that detects both thematically
coherent and relevant passages of varying lengths in response to a query.

Assessment As defined in Section 1.2, names of semantic XML tags concisely summarize
the topics, or subject matters, of marked-up text units. More specifically, semantic XML
tags reflect semantic concepts that domain experts typically associate with marked-up
content. Regardless of the granularity level, topic discovery in text documents is thus
an important body of relevant research. Consequently, clustering techniques that group
texts or text segments based on their content are reviewed in detail in Section 4.3 as
unsupervised learning is employed in our knowledge discovery process as well. Due to
the overall objective of semantic XML tagging, however, our research requires a different
approach to topic discovery than pursued by most techniques discussed above. First of
all, identified topics must be characterized in a concise, content-descriptive, and human-
comprehensible way because topic labels subsequently serve as names of semantic XML
tags. Furthermore, input documents are not segmented based on domain-specific subtopic
regions although we aim at discovering topics at the passage, or text unit, level. Instead
of marking up consecutive subtopic regions of varying length, our framework is designed
to semantically annotate pre-defined structural text units (e.g., sentences).

2.2.2 Extracting Relational Tuples from Text

Documents often comprise factual data, such as announcements of corporate takeovers
or bankruptcies. In these cases, actually rather structured facts are conveyed via un-
structured natural language as text documents are overwhelmingly written by human
authors for primary consumption by human readers. As introduced in Subsection 2.1.3,
information extraction techniques aim at filling pre-defined, scenario-specific templates
(e.g., ‘acquisition announcement’) from texts. After extraction, factual data can be
stored in a relational database to facilitate, for example, information integration and
queries using the Structured Query Language (SQL). The IE task of filling templates
by identifying instances of events and relationships in natural language text is synony-
mously referred to as extracting relational tuples1 from text. For example, the schema
AcquisitionAnnouncement(AcquiringCompany: string, AcquiredCompany: string,

MonetaryDealValue: string) defines the relation AcquisitionAnnouncement⊆ string

1Notation: Given n ∈ N arbitrary, not necessarily distinct, and atomic domains Di (i = 1, 2, . . . , n),
relation R ⊆ D1 × . . .×Dn is defined as the Cartesian product of n domains or as a subset thereof (cf.
Codd, 1970, 1990). Each domain Di is associated with a descriptive attribute name ai ∈ {a1, . . . , an}.
The schema of relation R is denoted by R(a1: D1, . . . , an: Dn). An n-ary element (d1, . . . , dn) ∈ R with
attribute values di ∈ Di is referred to as a tuple of relation R.
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× string × string. Tuples of this relation, like ("Giant Foo", "Innovative Boo",

"2000000.00 USD"), can be extracted from business news stories.
Searching for tuples of pre-defined relations in text documents is aimed at identifying

occurrences of related semantic concepts, as defined in Section 1.2. Hence, appropriately
chosen and content-descriptive names of relations, such as AcquisitionAnnouncement,
correspond to semantic concept labels. Analogously, attribute values of identified rela-
tional tuples may constitute named entities, whose types are characterized by attribute
names (e.g., AcquiringCompany). Text documents may thus be transformed into seman-
tically annotated XML documents. Unlike semantic XML markup in our framework,
however, tuples do define a semantic relationship between their attribute values.

Research into extracting tuples from documents is only relevant if the proposed solu-
tions explicitly address the question of processing plain, completely unstructured natural
language text. Consequently, research on creating source-specific information extraction
procedures, so-called wrappers, is deliberately excluded from the following discussion if
the techniques are only applicable to semi-structured documents, such as HTML files
published on the World Wide Web (e.g., Chang et al., 2006; Zhao and Betz, 2007). Abol-
hassani et al. (2003) distinguished the knowledge engineering approach from the machine
learning approach to information extraction. The former relies on extraction rules that are
manually created and updated by knowledge engineers. In contrast, the machine learning
approach infers extraction rules from annotated training documents. Additionally, the
fully automated approach to information extraction aims at both discovering relations
that exist in text corpora and extracting tuples thereof.

Knowledge Engineering Approach According to Jackson and Moulinier (2002, p. 81),
the Finite State Automaton Text Understanding System (FASTUS; Appelt
et al., 1995; Hobbs et al., 1996) is a representative of information extraction systems that
were employed in the series of Message Understanding Conferences. FASTUS represents
information extraction rules as a cascade of finite state automata that match incoming
text against expressions of regular languages handcrafted by knowledge engineers. Each
finite state automaton maps output data from its predecessor onto a more structured
representation, which in turn constitutes input for the next information extraction phase.

Earlier stages of the FASTUS extraction process recognize smaller and domain-inde-
pendent linguistic objects. After tokenizing character sequences into tokens, multi-token
words and proper names are identified. Sentences are decomposed into noun groups and
verbs groups by means of finite state grammars to avoid computationally expensive full
syntactic parsing (Grishman, 1997, pp. 21–23). Unlike other partial parsing approaches
(e.g., Neumann and Piskorski, 2002), FASTUS does not employ part-of-speech tagging
algorithms for reasons of scalability. Later IE process stages take these linguistic objects as
input and match them against finite state rules to fill slots of domain-dependent templates.
By employing elaborate rules, extracted relational tuples from distinct text passages are
merged into a composite template if they provide information about the same entity or
event. Finally, the system outputs relational tuples in the form of filled, domain-dependent
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templates. FASTUS performed well in MUC-6 by achieving 76% precision at 74% recall
in the template-filling task.

Machine Learning Approach Soderland (1999) introduced the WHISK system capa-
ble of learning information extraction rules from sentences of unstructured text. These
IE rules are system-specific regular expressions, whose matches correspond to tuples of
pre-defined relations. In a pre-processing phase, sentences are syntactically parsed. In
addition, terms may be mapped onto semantic classes that denote groups of synony-
mously used terms. Both syntactic and semantic metadata are valid elements of regular
expressions to be learned. WHISK incorporates a supervised learning algorithm to in-
duce IE rules and thus requires hand-tagged training examples. However, human efforts
are reduced by iteratively asking the knowledge engineer to annotate only texts likely to
improve the performance of the learning algorithm. WHISK attained 69% precision at
46% recall when applied to extract tuples of the management succession relation Succes-

sionEvent(Organization, Post, PersonOut, PersonIn) from news stories.
Soderland (1999) adopted a top-down approach to rule induction, which starts with

an ‘empty’ information extraction rule matching all training sentences. Subsequently,
this rule is iteratively extended by adding discriminative terms that serve as appropriate
boundaries for the values of relational tuples to be extracted. In contrast to top-down
rule induction, Califf and Mooney (2003) presented the bottom-up relational learning
algorithm Rapier, which incorporates techniques from inductive logic programming sys-
tems to induce IE rules from hand-tagged training documents. This ‘specific to general’
approach generalizes an initial set of rules, each of which represents a filled template oc-
curring in a training text. Attaining 86% precision at 60% recall, Rapier scored slightly
better than WHISK in extracting 17-ary tuples from textual job postings.

Unlike the above mentioned machine learning approaches to information extraction,
the Snowball system requires only a few user-supplied tuples of the relation, whose
tuples occur in plain texts (Agichtein and Gravano, 2000; Yu and Agichtein, 2003). The
user-provided exemplary tuples, like ("United Nations", "New York"), of the target
relation, like Headquarter(Organization, Location), are input to an algorithm that
infers rules for extracting them from the text collection. Applying these induced rules to
the same documents typically results in new tuples of the target relation. This process
is iteratively repeated whereby only sufficiently reliable tuples and patterns are employed
in the next iteration to ensure a high information extraction performance. Agichtein
and Gravano (2000) reported 76% precision at 45% recall when employing Snowball to
identify tuples of the relation Headquarter in a large collection of news stories.

Etzioni et al. (2004, 2005) introduced the KnowItAll system that extracts facts (i.e.,
tuples of relations) from textual Web pages in an unsupervised, domain-independent, and
scalable manner by extensively leveraging existing Web search engines. The generate-
and-test architecture resembles the iterative Snowball approach, but it further reduces
human efforts by inducing the required seed tuples from generic, domain-independent
extraction patterns. Inspired by Hearst (1992), KnowItAll initially utilizes extraction
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patterns that exploit part-of-speech tags to generate candidate facts. Subsequently, the
plausibility of candidate facts is tested by using pointwise mutual information statistics
and treating the Web as a massive corpus. The system is capable of instantiating n-ary
relations with arbitrary, user-supplied relation names and multiple, user-given predicate
arguments, yet the authors experimentally focused on unary relations.

Suchanek et al. (2006) presented another approach that combines linguistic and sta-
tistical analysis to extract tuples of a priori specified, binary relations from textual Web
pages. Instead of limiting the linguistic feature space to part-of-speech information (e.g.,
cf. Snowball and KnowItAll), the authors proposed utilizing deep syntactic analy-
sis features as input to a supervised machine learning technique. The prototype system
LEILA requires a definition of each target relation in the form of a specifically pro-
grammed “function that decides into which of” four “categories a pair of words falls”
(Suchanek et al., 2006, p. 713). To set up the semantic search engine NAGA (cf. Kas-
neci et al., 2007), the prototype system was employed to extend the knowledge base
YAGO, which was initially established from structured data sources by carefully, semi-
automatically combining rule-based and heuristic methods (cf. Suchanek et al., 2007).

Fully Automated Approach To reduce the large number of search engine queries re-
quired by KnowItAll (cf. Etzioni et al., 2005) and to eliminate the need to specify
relation names and predicates, Banko et al. (2007) and Etzioni et al. (2007) introduced
the Open Information Extraction paradigm. It obviates relation specificity by
automatically discovering possible relations of interest in one pass over the corpus with-
out requiring any human input. The prototype system TextRunner comprises a self-
supervised learner, a single-pass extractor, and a quality assessor module. Based on a
small corpus sample annotated by a deep linguistic parser, the learning module automat-
ically identifies and labels trustworthy and untrustworthy candidate relations between
noun phrases. This labeled data set, whose features can be evaluated at extraction time
without a parser, is input to training a Naive Bayes classifier used by the extractor mod-
ule. Relation extraction and assessment is performed akin to KnowItAll. Banko et al.
(2007, p. 2674) extracted over one million high-quality tuples of binary relations, which
are “potentially useful for information extraction,” from approx. nine million Web pages.

In contrast to the Open Information Extraction paradigm that aims at identifying
as many distinct relations as possible in large text corpora, Sekine (2006) introduced the
notion of on-demand information extraction to discover relations in documents returned by
an information retrieval system in response to a user’s query. Analogous to TextRunner,
the proposed system strongly relies on natural language processing by performing part-of-
speech tagging, dependency analysis, rule-based named entity extraction, and paraphrase
discovery. Instead of training a classifier, however, an unsupervised machine learning
technique is employed to identify groups of patterns that correspond to n-ary, unlabeled
relations of named entities occurring in the same semantic context.
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Assessment Due to the research conducted in the series of Message Understanding Con-
ferences, extracting relational tuples from unstructured text is a partly solved research
issue. Machine learning and fully automated techniques significantly reduced the nec-
essary efforts of knowledge engineers to establish and maintain extensive repositories of
information extraction rules. For the purpose of semantic XML tagging of domain-specific
text documents, the originally posed research question on how to extract domain-specific
named entities from text units is thus considered solved by related work. Consequently,
we do not address named entity extraction in the remainder of this work in detail, but
rather utilize the techniques conceived by this research community.

Extracting tuples from text focuses either on populating a small number of relations
of major importance or finding all occurring relations independent of their importance.
Instead of filling a few pre-defined templates or merely enumerating relational tuples,
our framework is designed to find frequently occurring, important semantic concepts and
associated named entities in text units. Discovered concepts may be interpreted as rela-
tion names, and extracted named entities might correspond to attribute values of these
relations. However, we do not aim at establishing a semantic relation between frequently
occurring named entity types in text units, which are marked up with a common semantic
concept. Hence, semantic XML annotation and extraction of relational tuples constitute
complimentary research questions. After converting texts into semantically tagged XML
documents, information extraction techniques can, for example, be utilized to further
structure the content of text units featuring important semantic concepts.

2.2.3 Learning Taxonomies, Thesauri, and Ontologies

The tasks of conceptually indexing and retrieving text documents are largely facilitated
by an existing, typically domain-specific controlled vocabulary (Baeza-Yates and Ribeiro-
Neto, 1999, pp. 170–171). A controlled vocabulary is a pre-defined list of accepted index
terms or concepts (Moens, 2000, pp. 51–53). It usually incorporates some form of seman-
tic structure, such as definitions of hierarchical and associative relations between terms.
Controlled vocabularies normalize indexing concepts and therefore allow for the identi-
fication of indexing concepts with a well-defined semantic meaning. After employing a
word sense disambiguation algorithm (cf. Manning and Schütze, 1999, pp. 229–261), dis-
ambiguated terms can be automatically mapped onto appropriate concepts by exploiting
the semantic structure of a controlled vocabulary. For example, the piece of text ‘rate of
interest’, whose third token is disambiguated as ‘money charged for borrowing money’, is
mapped onto the semantic indexing concept ‘interest rate’.

Mapping terms occurring in text documents onto unambiguous semantic concepts is
slightly related to semantic XML tagging. Our framework for semantic XML markup,
however, assigns meaningful concept descriptors to entire text units instead of focusing
on the meaning of single terms. Resembling topic discovery reviewed in Subsection 2.2.1,
each text unit may be content-descriptively characterized by the set of descriptors that
comprises all extracted semantic concepts. Clearly, an existing and semantically enriched
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controlled vocabulary is useful for extracting topics as well. For that reason, we give an
overview on techniques for (semi-) automatically inducing an initial, semantically enriched
controlled vocabulary from a collection of text documents. In particular, approaches to
learning taxonomies, thesauri, and ontologies from free form text are introduced in the
remainder of this subsection. We again focus on techniques designed to process unstruc-
tured textual data and thus deliberately exclude approaches that exploit characteristics
of structured or semi-structured data (e.g., Suchanek et al., 2007).

Taxonomy Learning Taxonomies are classification systems that organize concepts repre-
sented by words or phrases (Saeed, 2003, p. 68). Typically, taxonomies have a hierarchical
structure and are synonymously referred to as topic hierarchies, concept trees, or concept
hierarchies. In particular, more general concepts (e.g., ‘stockholders’ equity’) are included
at upper hierarchy levels of taxonomies whereas specific concepts (e.g., ‘preferred stock’)
are placed at lower taxonomic levels (Chung et al., 2002, p. 608). Thereby, the hyponymy,
or inclusion, relation between concepts is made explicit (Saeed, 2003, p. 68). A hyponym
includes the meaning of a more general concept and thus ‘is a kind of’ the more general
concept. For example, ‘preferred stock’ and ‘common stock’ are hyponyms of ‘stockhold-
ers’ equity’. In contrast, a more general concept, such as ‘stockholders’ equity’, is referred
to as the hypernym of more specific concepts.

Hearst (1992, 1998a) described a light-weight method for acquiring hyponyms from
text by searching for occurrences of hyponymy-specific lexico-syntactic patterns. For
example, the pattern ‘NP1 such that NP2 or NP3’ matches three semantically related
noun phrases NPi, i ∈ {1, 2, 3}. According to the semantics of the English language,
occurrences of this lexico-syntactic pattern (e.g., ‘stockholders’ equity such as common
stock or preferred stock’) imply that NP2 and NP3 are hyponyms of NP1. Given a few
initial lexico-syntactic patterns, new patterns are automatically and iteratively discovered
in a text corpus. After clustering nouns using a hierarchical agglomerative algorithm,
Caraballo (1999) employed the Hearst approach to find appropriate hypernyms for labeling
each cluster in the hierarchy of related nouns. Another simple, but effective, statistical
approach to building a concept hierarchy was pursued by as Sanderson and Lawrie (2000).
Based on term co-occurrence frequencies, the method assumes that term t1 is a hypernym
of term t2 if the documents containing t2 are a subset of those comprising t1.

Subsequent to clustering text documents, Glover et al. (2002) analyzed term frequency
statistics in the entire collection and in clusters to infer hierarchical term relationships.
Mao et al. (2003a) also employed hierarchical agglomerative clustering to establish a
collection-specific taxonomy. The authors proposed disambiguating the sense of salient
words in each cluster and looking up related synonyms, hypernyms, and hyponyms in a
lexical reference system. Each cluster of text documents is assigned a meaningful label
derived from dominant, semantically enriched concepts in documents that are assigned
to itself and its children clusters. Snow et al. (2006) proposed an algorithm for induc-
ing taxonomies that incorporates evidence from multiple classifiers over heterogeneous
taxonomic relationships and considers lexical ambiguity in one probabilistic framework.
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Thesaurus Learning Having Greek and Latin origins, the term thesaurus has been used
to denote a ‘treasury’ of words and phrases for centuries (Foskett, 1997, pp. 111–115).
Most thesauri comprise domain-specific, as opposed to general, entries in the form of
single words, composite words, or phrases. Typically, thesauri (i) provide an alphabetical
list of entries, (ii) contain internal references from entries to related terms, and (iii) group
entries into conceptual categories. Although thesauri are a useful means of enhancing
one’s style, they nowadays primarily serve as indexing languages for information retrieval
to provide a standardized vocabulary and ensure consistent indexing (cf. ISO 2788, 1986).

Usually, thesaurus entries are associated with concepts as basic semantic units for con-
veying ideas (Baeza-Yates and Ribeiro-Neto, 1999, p. 171). Since a semantic concept
can often be expressed by various synonymous words, only one thesaurus entry (i.e., the
preferred term) represents a given semantic concept for indexing purposes (ISO 2788,
1986). All non-preferred terms reference their respective preferred thesaurus entry. Fur-
thermore, the concretely referred to sense of homonyms is disambiguated by a qualifying
word or phrase, such as ‘bank (river)’. Moreover, thesauri make explicit different kinds of
hierarchical (e.g., hyponymy) and associative relationships between entries.

Grefenstette (1994) introduced the SEXTANT approach to extracting corpus-specific
semantics that is based on domain-independent syntax parsing techniques. Given a corpus
of unstructured text, SEXTANT creates a corpus-specific list of similar words for each
term and thereby groups terms into conceptual categories. Assuming that similar terms
are used in a similar way throughout the corpus, the similarity between terms depends
on their local context words and can thus be computed by applying standard similarity
measures. Grefenstette demonstrated that term similarities extracted by this method
correspond to human similarity judgments. The resulting context-based term similarities
are exploited to automatically enrich an existing thesaurus or to establish an initial,
preliminary thesaurus. In the latter case, SEXTANT only extracts semantically related
terms instead of inferring complex hierarchical or associative term relationships.

Chen et al. (1997), Houston et al. (2000), and Chen et al. (2003) advocated the statis-
tical concept space approach to automatically constructing domain-specific thesauri. A
concept space is a network of terms and weighted term associations that make explicit
semantic concepts and their relationships occurring in the underlying information space
(i.e., documents in an archive). Subsequent to domain-specific text pre-processing and
automatic indexing to identify relevant terms, an asymmetric similarity measure is used
to compute pairwise similarities of index terms in the co-occurrence analysis step. Based
on the resulting network-like thesaurus, an associative retrieval component employs a
standard neural network algorithm to determine terms that are semantically related to
a user-supplied query. The concept space approach is also adopted by Leximancer to
map texts onto a set of thesaurus-like concepts (Smith, 2000).

Ontology Learning In the context of formal knowledge representation in artificial intel-
ligence systems, Gruber (1993, p. 199) defined an ontology as an“explicit specification of a
conceptualization.” According to Gruber, the term conceptualization denotes a simplified
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and abstract view of the focal real-word domain, or a part thereof. A conceptualization
reflects the relevant concepts (e.g., entities and attributes), their definitions, and their
inter-relationships (cf. Uschold and Gruninger, 1996). We adopt the definition proposed
by Fensel (2004, p. 3) that additionally incorporates the aspect of knowledge sharing and
the focus on formal, machine-processable domain models: “An ontology is a formal, ex-
plicit specification of a shared conceptualization.” Formally specified ontologies associate
concepts and their relations with (i) representational names, (ii) human-readable defini-
tions describing the meaning of concepts, as well as (iii) formal axioms constraining their
interpretation and enabling automated reasoning (Gruber, 1993, p. 199). In particular,
the required formal specification and the possibility to define arbitrary logical relation-
ships between concepts distinguish ontologies from typical, informally defined taxonomies
and thesauri (cf. McGuinness, 2003, pp. 173–185).

Maedche and Staab (2000) as well as Maedche (2002) introduced the ontology learn-
ing framework Text-To-Onto, whose implementation is embedded into the ontology
engineering workbench OntoEdit. The multi-disciplinary framework supports the semi-
automated extraction of ontologies from unstructured texts and their subsequent main-
tenance. More specifically, Maedche (2002) presented several ontology learning algorithms
that have been adapted from existing work in, for example, hierarchical clustering, as-
sociation rule discovery, and pattern matching. The framework comprises algorithms to
extract lexical entries referring to concepts and their relations, to organize concepts in
a taxonomy, to identify non-taxonomic relations between concepts, as well as to prune
and refine initially inferred ontologies. Emphasis is placed on the aspect of importing and
pre-processing natural language text using the SMES system (cf. Neumann et al., 1997)
because linguistic knowledge improves the quality of ontology learning. Cimiano (2006)
continued Maedche’s work on ontology learning and population by presenting various al-
gorithms within the Ontology Learning Layer Cake framework. Cimiano focused
on inducing concept hierarchies, learning attributes of binary relations between concepts,
as well as extracting instances of concepts to populate an ontology from texts.

Missikoff et al. (2002a,b) pursued an iterative approach to learning, validating, and
managing ontologies, which includes the OntoLearn module for automatic concept dis-
covery from texts. Analogously to Maedche (2002), the authors strongly relied on lin-
guistic pre-processing before employing statistical and machine learning algorithms. The
system extracts relevant domain-specific terminology, disambiguates term senses, assigns
unambiguous concept names to terms, as well as identifies taxonomic and similarity rela-
tions among concepts. After deploying OntoLearn in a project, Missikoff et al. (2002a,
pp. 56–57) reported a remarkable increase in ontology creation productivity.

Buitelaar et al. (2004) described the OntoLT plug-in for the ontology editor Protégé
(cf. Gennari et al., 2003), which connects linguistic analysis and ontology learning. On-
toLT applies manually or semi-automatically created rules to extract concepts and their
attributes from linguistically annotated text corpora. Before finally constructing or ex-
tending an ontology, statistical pre-processing is applied to filter relevant, domain-specific
concepts from selected linguistic entities (e.g., nouns and their modifiers).
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AssessmentVarious research communities proposed, implemented, and successfully evalu-
ated techniques to assist knowledge engineers in the laborious task of establishing domain-
specific controlled vocabularies. In general, however, human beings still play a decisive role
in assessing, pruning, and extending an algorithmically established controlled vocabulary.
Due to the complexity of natural language, the development of fully automated techniques
is an open research challenge (cf. Zhou, 2007, pp. 247–249).

Our framework for semantic XML tagging does not aim at identifying semantic concepts
at the term level. Its objective is rather to annotate structural text units with content-
descriptive tags. Typical semantic tags consist of several atomic concepts, or basic units
of thought, whose specific combination conveys the meaning of marked-up text. For
example, the XML tag <AcquisitionAnnouncement> comprises the atomic concepts ‘ac-
quisition’ and ‘announcement’, both of which are supposed to occur in marked-up text
units. Nevertheless, our framework does incorporate a domain-specific controlled vocabu-
lary to ensure a high quality of semantic text annotation, as discussed in Subsection 4.2.4.
Consequently, research into learning taxonomies, thesauri, and ontologies constitutes an-
other complimentary research area to the research questions pursued in this work. With-
out doubt, these techniques can potentially reduce the human efforts of establishing and
maintaining a controlled vocabulary prior to semantic XML tagging.

2.3 Semantic Annotation of Text Documents

After reviewing implicitly related work on concept identification in the preceding section,
we now survey explicitly relevant research into semantic text annotation. Colloquially,
the term annotation refers to a note by which explanation or comment is added to a
text document (Bechhofer and Goble, 2003, pp. 196–197). The authors differentiated be-
tween three major annotation types: textual annotation, link annotation, and semantic
annotation. Textual annotations are created by adding personal notes and comments to
documents whereas link annotations denote embedded references to thematically related
resources. In principle, these two annotation types primarily address human readers and
authors. Semantic annotations convey explicit metadata about the meaning of annotated
content. Besides explicitly providing semantic clues for human consumption, semantic
annotations are mostly inserted into documents to facilitate automated document pro-
cessing by software agents. To that end, the meaning of semantic annotations must be
explicitly defined in a formal ontology (cf. Fensel, 2004, pp. 3–10).

In accordance with our research questions raised in Section 1.4, we restrict the review
to research into explicit semantic annotation of unstructured textual data. Consequently,
we refrain from discussing work on textual annotation (e.g., Annotea, Kahan et al.,
2002) and research into link annotation (e.g., COHSE, Bechhofer and Goble, 2003). By
intentionally excluding work on textual annotation, we in particular refrain from surveying
so-called Web 2.0 tagging systems (e.g., cf. Marlow et al., 2006; Ames and Naaman, 2007).
Tagging systems allow users to intuitively attach personal keywords to Internet resources
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(e.g., blog entries, links, photos or videos) for subsequent personal and community use
without relying on any form of controlled vocabulary at all.

Due to the interest in Semantic Web applications (cf. Berners-Lee et al., 2001), re-
searchers proposed various techniques to facilitate the semantic annotation of semi-struc-
tured Web pages. In contrast, our work focuses on semantic markup of unstructured
texts. Hence, frameworks and tools are deliberately excluded from the discussion if their
application is restricted to semi-structured HTML or XML files. Analogously, specific
techniques for other semi-structured documents (e.g., BibTex entries) and highly struc-
tured, often ungrammatical text files (e.g., seminar announcements and classifieds) are
not reviewed either. Finally, linguistic and natural language processing research into word
sense disambiguation and semantic annotation at the term level is not considered relevant
either as our framework is designed to annotate structural text units.

In the remainder of this section, we outline characteristic research projects aimed at
semantically tagging entire text documents or individual text passages. Thereby, we
discuss techniques for both informal and formal semantic annotation. Our framework
for semantic text annotation generates explicit and informal semantic XML markup. To
bootstrap the Semantic Web, however, a large body of related research has been directed
at ontology-based, formal, and thus machine-understandable semantic markup of text
documents. In this section, related research is primarily categorized with respect to the
degree of apparently required human involvement. We distinguish between manual, semi-
automated, and automated approaches to semantic text annotation.

2.3.1 Manual Semantic Text Annotation

Undoubtedly, the semantic enrichment of documents by hand is a laborious task. Never-
theless, some applications rely on manually crafted annotations because they require high
quality, intellectually challenging, and/or fine-grained semantic markup. Following, we
describe representative research projects that resort to manual annotation for these rea-
sons. Thereafter, a characteristic framework and several tools are reviewed that support
authors and domain experts in the process of semantically annotating texts. Finally, work
on manual semantic annotation is assessed with respect to our research.

Use Cases for Manual Semantic Markup Launched in 1987, the Text Encoding Ini-
tiative (TEI) is an internationally accepted guideline for encoding literary and linguistic
texts for scholarly research (Ide and Sperberg-McQueen, 1995, pp. 5–11). Nowadays, this
guideline serves as the de facto standard for encoding and exchanging, for example, dic-
tionaries, literary prose, and recorded spoken language. This guideline consists of several
extensively documented SGML document type definitions for various types of scholarly
text (Sperberg-McQueen and Burnard, 1995, pp. 22–37). SGML tags represent conven-
tional document metadata, structural metadata (e.g., indicating paragraphs), or content-
descriptive metadata (e.g., indicating stage directions in drama). Content-descriptive TEI
tags are explicit and informal semantic annotations. The TEI Consortium also released
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an XML-based guideline (cf. Sperberg-McQueen and Burnard, 2002).
Due to the potential benefits induced by the TEI guideline, scholars have an incentive

to encode texts accordingly. To generate high quality markup, human domain experts
are frequently employed to manually assign appropriate content-descriptive tags to text
passages. Unlike these semantic tags, structural markup can be reliably created in an au-
tomated manner. For example, the Orlando project (Butler et al., 2000) purposefully
extended TEI document type definitions to encode a literary history of British women
writing. Team members compiled an archive of structurally and thematically annotated
SGML documents and thereby enabled sophisticated document post-processing. Instead
of marking up existing documents, a team of highly qualified researchers and graduate
students authored textual content and corresponding semantic annotations in parallel.
After agreeing upon a document type definition comprising 238 unique tags, team mem-
bers inserted more than 577,000 annotations into approx. 2,500 texts, like biographies or
historical reports. Despite taking social and technical precautions, the observed tagging
consistency among the large team of authors did not meet the high expectations and thus
proved to be a challenging research issue. Interestingly, this result confirmed previous
empirical studies on inter-tagger consistency (Butler et al., 2000, pp. 124–125).

Bayerl et al. (2003b) emphasized the importance of manual annotations in the compil-
ation of corpora and linguistic research material. In this context, Bayerl et al. (2003a)
presented a corpus-based method to analyze the semantics of structural markup in XML-
encoded scientific articles. Due to the absence of appropriately tagged archives, 158
scientific articles were annotated at the structural level and two linguistically motivated
semantic levels. Analogously to the above mentioned Orlando project, domain special-
ists manually added semantic markup to already structurally tagged articles. During the
annotation phase, a systematic methodology was adopted to ensure the consistent usage
of semantic tags by all team members (Bayerl et al., 2003b).

Finally, Weiss-Lijn et al. (2002, 2003) described the GridVis system for interactive
exploration of semantically enriched document collections. Resembling passage retrieval
systems (cf. Salton et al., 1993; Callan, 1994), GridVis facilitates the goal-driven search
for relevant information at the paragraph level by leveraging semantic metadata. Docu-
ment collections are visualized by a matrix, whose rows represent a hierarchy of semantic
concepts occurring at the paragraph level. The occurrence of semantic concepts in cer-
tain paragraphs, which are represented by matrix columns, can easily be visualized by
coloring the respective matrix cells. Weiss-Lijn et al. (2003, p. 117) underlined that
high-quality semantic metadata is essential to implement and evaluate the novel visual-
ization technique: Unlike low-quality metadata that can be produced with relatively little
human involvement, the required high-quality semantic metadata was“painstakingly hand
crafted.” In particular, Weiss-Lijn et al. established and iteratively refined a taxonomy
of domain-specific concepts. Subsequently, all paragraphs of two corporate text archives
were manually annotated by making explicit the concepts occurring therein.

Facilitating Manual Semantic Markup Handschuh and Staab (2003b,c) introduced the
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annotation framework CREAM, whose acronym stands for CREAting Metadata for
the Semantic Web. This conceptual framework facilitates the semantically accurate
and ontology-based annotation of resources published on the Web. Handschuh and Staab
aimed at overcoming the ‘annotation bottleneck,’ namely, the hardly existing willingness
to provide the required explicit and formal metadata. This phenomenon poses an enor-
mous challenge in the process of transforming the envisioned Semantic Web (cf. Berners-
Lee et al., 2001) into omnipresent reality. CREAM specifies components for (i) manual
annotation of existing resources, (ii) authoring of semantically enriched resources, and (iii)
semi-automated markup of resources (cf. Subsection 2.3.2). The reference implementation
OntoMat-Annotizer is a client application of the freely available KAON tool suite
(cf. Maedche and Staab, 2003, p. 29). An extended version is part of the commercial On-
toprise Tool Suite (cf. Fensel, 2004, pp. 83–84). The free reference implementation
only supports the markup of semi-structured resources, such as HTML files. Neverthe-
less, the semantic annotation of unstructured texts is conceptually encompassed by this
framework as well (Handschuh and Staab, 2003c, p. 29).

The conceptual framework CREAM is designed to satisfy requirements for successful
semantic annotation, which reflect the authors’ experience gained in several knowledge ac-
quisition projects (Handschuh and Staab, 2003c, pp. 26–28). Ensuring consistent markup,
using proper references, and avoiding redundant markup are the top three out of nine pre-
requisites for successfully creating formal and semantically accurate metadata. Markup
consistency requires annotators to adhere to a given ontology because only well-defined
formal annotations allow for effective knowledge sharing and automated reasoning. In
addition, real-world entities, like human beings, must be referenced by unique identifiers
within the entire knowledge base. Otherwise, captured knowledge about particular en-
tities cannot be completely retrieved from the knowledge base. To make the reuse of
captured knowledge possible, collaborative annotation systems should prevent users from
unknowingly providing redundant markup of already tagged resources.

Tallis et al. (2001, 2002) argued that benefits of semantic markup mostly accrue to
agent-assisted consumers of documents published on the Semantic Web. In contrast, con-
tent producers typically lack the motivation to put in extra annotation effort. To simplify
the costly production of hand-crafted semantic metadata, Tallis et al. designed and imple-
mented the Briefing Associate plug-in that augments Microsoft’s widely used Pow-
erPoint application. This plug-in enables authors of PowerPoint presentations to
simultaneously compose the actual content and the corresponding formal, ontology-based
metadata. Unlike the reference implementation of CREAM, Briefing Associate takes
advantage of a popular commercial off-the-shelf application and thereby reduces the re-
quired initial training of users. Tallis (2003) and Eriksson (2007) introduced plug-ins that
support semantic annotation in Word and PDF documents, respectively. Briefing As-
sociate and SemanticWord are representatives of highly specialized annotation tools.
By contrast, GATE is a flexible, component-based architecture for natural language pro-
cessing (cf. Cunningham, 2002). Specifically, the GATE Manual Annotation Tool
supports theory-neutral, format-independent text annotation and thus enables authors to
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insert arbitrary semantic markup into texts as well.
To persuade content producers into semantically tagging documents, Tallis et al. (2002)

suggested offering them value-adding services that exploit semantic metadata and thus
demonstrate their usefulness. This strategy resembles the instant gratification approach
pursued in the Mangrove project to entice non-technical people to semantically anno-
tate their resources (McDowell et al., 2003). Besides offering a robust and easy-to-use
annotation tool, providing instant gratification to content authors is a key concept in
Mangrove. Concretely, newly marked-up content is immediately published and con-
sumed by semantics-based Web services that show the utility of annotated resources.
Analogously, Motta et al. (2000) emphasized the necessity of identifying concrete use
scenarios and added value prior to beginning ontology-driven document enrichment.

Assessment Despite the costs involved, semantic text annotation by hand is the pre-
ferred technique in a variety of domains. Substituting costly manual with (semi-) auto-
mated markup techniques, which provide semantic markup of comparably high quality,
is therefore an open research challenge. Our framework for semantic tagging of large,
domain-specific text archives comprises a semi-automated knowledge discovery phase fol-
lowed by a fully automated application phase. If the DIAsDEM framework is capable of
maintaining equivalently high markup quality, it can easily complement applications that
currently rely on hand-crafted metadata, such as GridVis (cf. Weiss-Lijn et al., 2003)
introduced above. Nevertheless, our framework should only be applied in a well-defined
and value-adding (i.e., benefits outweigh costs) scenario because experienced domain and
KDT specialists are involved in the initial knowledge discovery phase.

Unlike the framework and tools reviewed above, our explicit and informal approach to
semantic tagging does not incorporate a priori established, formal ontologies as input. This
characteristic feature is discussed after reviewing research into semi-automated, mostly
formal text annotation in the next subsection.

2.3.2 Semi-Automated Semantic Text Annotation

Unlike truly automated techniques, semi-automated text annotation tools purposefully
incorporate knowledge supplied by human experts into the tagging process. Instead of
having to manually mark up entire text archives, domain and KDT specialists typically
annotate training documents as input for machine learning algorithms, supervise a knowl-
edge discovery process, or assess the markup quality to adjust parameters of annotation
algorithms. In this subsection, we consider approaches to semantic text annotation as
being semi-automated if they require considerable human intervention in any phase of
the proposed process. We classify representative approaches to semi-automatic seman-
tic text annotation into (i) methods chiefly based on information extraction algorithms
and (ii) methods mainly based on natural language processing techniques. Furthermore,
Reeve and Han (2005), Uren et al. (2006), and Han et al. (2007, pp. 443–449) provided
comprehensive surveys of existing semantic annotation platforms.
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Focus on Information Extraction Amilcare is an adaptive information extraction
system based on supervised rule induction (Ciravegna et al., 2003; Ciravegna and Wilks,
2003). This system is embedded within the Melita annotation tool for human-centered
semantic markup of textual resources. In particular, Ciravegna et al. introduced a
methodology of seamless interaction between human annotators, the annotation inter-
face, and the information extraction algorithm that aims at providing non-intrusive and
timely support for human annotators. Consequently, annotators do not directly inter-
act with an IE system, but they merely accept, correct, or decline automatically created
annotation suggestions within their usual markup environment. The IE-enhanced annota-
tion process is split into two main phases. While the user annotates named entities in the
initial training phase, Amilcare induces information extraction rules in the background.
These rules are utilized to make markup suggestions in the second phase, which is de-
noted ‘active annotation with revision.’ In this phase, users are encouraged to actively
correct erroneous markup suggestions. User feedback augments the training documents
and triggers a re-execution of the rule induction algorithm.

Given appropriate training documents, Amilcare is capable of extracting arbitrary
named entities, such as names of persons, locations, dates, or phone numbers (Ciravegna
and Wilks, 2003, pp. 114–117). Hence, this information extraction system offers a flexible
support for identifying and annotating these named entities in text documents. Ciravegna
et al. (2003, p. 159) extracted named entities from rather structured seminar announce-
ments and concluded that Amilcare and Melita substantially contributed towards re-
ducing the “burden of manual annotation.” Furthermore, S-CREAM (Handschuh et al.,
2002) and MnM (Vargas-Vera et al., 2002) successfully integrated the Amilcare infor-
mation extraction system to semi-automatically markup named entities. Users of both
S-CREAM and MnM approve identified named entities before the tools generate explicit
and formal semantic markup adhering to a pre-defined ontology.

The Semantic Content Organization and Retrieval Engine (SCORE) is a
comprehensive and integrated tool set designed to facilitate the development of analysis-
oriented Semantic Web applications (Sheth et al., 2002). SCORE provides facilities to
define ontological components, as well as to extract, normalize, store, integrate, and query
ontology-based metadata. In particular, SCORE exploits semantic metadata to associate
semantically related, but not directly connected, content. Establishing semantic links
between heterogenous resources requires a tight integration of document management,
knowledge management, and semantic technology. In this context, the Semantic En-
hancement Engine (SEM) pre-processes heterogeneous content, employs supervised
learning techniques to determine the topicality of documents, and extracts contextually
relevant semantic metadata (Hammond et al., 2002). Semantic text annotations are ex-
plicitly and informally stored in XML files conforming to specific XML document type
definitions. Other formal ontology languages like the W3C-proposed Web Ontology Lan-
guage OWL (cf. Fensel, 2004, pp. 44–46) can be supported in principle.

Prior to extracting metadata, automated text classification (cf. Sebastiani, 1999) is
employed in SEM to assign retrieved documents into pre-defined thematic categories
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(Hammond et al., 2002). For each topic category, contextually relevant semantic metadata
are defined in a topic-specific ontology. SEM executes information extraction algorithms
to semantically enhance documents by making explicit topic-related entities and their
relationships. Since text classification requires human-generated rules or manually tagged
training documents, we consider SCORE to be semi-automated annotation system. In
addition, topic-specific IE techniques typically necessitate hand-coded regular expressions.
However, Sheth et al. (2002, pp. 85–86) reported that only three full-time knowledge
engineers implement and maintain “a few hundred Web-based extractors.”

Abolhassani et al. (2003) distinguished between macro- and micro-level text markup.
The former corresponds to structural markup, as defined in Section 1.2, whereas the latter
denotes semantic markup of single words or word groups. Within the Vasari project,
Abolhassani et al. focused on micro-level markup and applied information extraction
techniques to semantically annotate plain texts published in encyclopedias of art. Af-
ter processing, for example, introductory articles about artists, informal semantic XML
tags make explicit names of artists, places of their birth, and detailed descriptions of
their achievements. The Vasari project adopts the knowledge engineering approach to
information extraction and is thus considered to support semi-automatic text annota-
tion. After having interactively and iteratively defined domain-specific extraction rules,
however, thematically related texts can be automatically annotated.

Focus on Natural Language Processing Although Web pages are generally considered
to be semi-structured, they often contain passages of unstructured text without embedded,
semi-structuring HTML markup. Buitelaar and Declerck (2003) thus stressed the need
for language technologies to establish the Semantic Web (cf. Berners-Lee et al., 2001) on
a large scale. By determining the inherent semantic structure, natural language process-
ing transforms text into a representation suitable for subsequent information extraction
and content-descriptive markup, respectively. According to Buitelaar and Declerck, nat-
ural language processing techniques (e.g., morphological analysis, part-of-speech tagging,
chunking for phrase identification, and word sense tagging) are important pre-processing
steps to generate explicit and formal text markup for Semantic Web applications. In
fact, all IE-focused techniques for semantic annotation surveyed above do perform lin-
guistic pre-processing to some limited extent because the actual information extraction
algorithms cannot be applied to plain natural language text.

Volk et al. (2002) as well as Buitelaar and Declerck (2003) integrated linguistic and
semantic annotation to associate textual content with domain-specific, ontology-based
knowledge. The MuchMore framework facilitates conceptual, cross-language informa-
tion retrieval in a corpus of medical abstracts. For each abstract, multiple layers of in-
depth linguistic and semantic annotations are stored in a single XML file conforming to a
project-specific XML document type definition (cf. Vintar et al., 2002). Thereby, explicit
and informal semantic markup is generated in MuchMore. More specifically, semantic
tagging corresponds to mapping terms onto concepts that are defined in domain-specific,
informal or formal ontologies (e.g., thesauri, semantic lexicons, or semantic networks). In
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addition, ontology-defined relations between concepts are made explicit. The approach
pursued by Buitelaar and Declerck is considered to be semi-automated because linguistic
algorithms must be manually parameterized for each new domain prior to automatically
annotating domain-specific texts. After tagging German abstracts, Volk et al. concluded
that linguistic processing, in particular lemmatization and compound analysis, is a pre-
requisite for creating high-quality semantic markup.

The XDOC Document Suite is a tool collection for linguistic text processing (Rös-
ner and Kunze, 2003; Kunze, 2006). XDOC comprises several modules for text pre-
processing, detection of linguistic units (e.g., sentences and titles), part-of-speech tagging,
syntactic parsing, and semantic analysis. Semantic tagging in XDOC corresponds to
mapping terms onto concepts defined in a domain-specific semantic lexicon. In particu-
lar, case frame analysis is conducted to resolve ambiguous term senses and to map disam-
biguated words onto concepts. Furthermore, relations between concepts are identified by
exploiting syntactic characteristics of domain-specific sublanguage. Since linguistic text
annotations are stored in tool-specific XML documents, this application generates explicit
and informal semantic markup. Rösner et al. (2004) outlined a use case for XDOC in the
context of transforming and enriching textual content for Semantic Web applications. The
XDOC Document Suite is a semi-automated text annotation tool because it requires
domain-specific parameterization.

Analogous to the XDOC Document Suite, Li et al. (2001) exploited syntactic char-
acteristics of domain-specific sublanguage to semantically annotate sentences. The au-
thors focused on sublanguage texts with limited vocabulary, patterns in vocabulary us-
age, and rare semantic ambiguities. Essentially, Li et al. proposed to syntactically parse
sentences and subsequently employ supervised learning algorithms to infer a mapping
between the syntactical sentence structure and RDF (cf. Fensel, 2004, pp. 19–21) state-
ments, which constitute explicit and formal markup. However, this approach requires a
considerable human effort to create a training corpus by manually labeling syntactically
parsed sentences with RDF statements. The authors demonstrated the feasibility of this
approach by annotating 500 sentences from approx. 300 clothes descriptions.

Besides analyzing company descriptions and technical documentation, Rösner and Kun-
ze (2003) employed the XDOC Document Suite to semantically annotate German
autopsy protocols. In this medical sublanguage, a very telegrammatic style is dominant
(cf. Rösner and Kunze, 2003, p. 123). Focusing on a related medical domain, Moore
and Berman (2001) presented a technique to convert textual pathology reports into se-
mantically marked-up XML documents. Moore and Berman employed natural language
processing techniques and a medical thesaurus to map single terms and noun groups onto
medical concepts. Subsequently, medical concepts serve as XML tags that semantically
annotate the corresponding terms in an explicit and informal way.

Assessment Analogous to the research reviewed above, our framework pursues a semi-
automated approach to semantic text annotation. The initial, interactive knowledge dis-
covery phase incorporates human domain knowledge to ensure a consistently high markup
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quality. In the second, batch-oriented phase, domain-specific text documents are automat-
ically transformed into semantically tagged XML documents. Like the surveyed research
on semi-automated text annotation, our framework is also focused on domain-specific text
archives to exploit characteristics of the respective sublanguage.

As defined in Section 1.2, our framework derives archive-specific XML tags that con-
cisely summarize the content of structural text units. Unlike research into purely IE-based
text annotation, the DIAsDEM framework is hence not restricted to marking up certain
named entities only. The identified named entities rather augment content-descriptive
XML tags. Thereby, extracted named entities are placed in a semantic context. However,
we do not aim at inferring the specific roles of named entities within annotated text units.
As the primarily linguistic research into semantic markup, our approach maps structural
text units comprising multiple terms onto high-level semantic concepts. In contrast to
annotation tools focusing on natural language processing, the DIAsDEM framework
additionally incorporates conventional information extraction techniques. Thereby, our
approach combines the information extraction thread of research into text annotation and
the linguistic aspect of mapping textual content onto semantic concepts. We advocate
basic linguistic text pre-processing (e.g., tokenization and lemmatization), but we refrain
from employing sophisticated NLP techniques, such as morphological analysis or syntactic
parsing, to reduce complexity.

A large proportion of research into semi-automated semantic tagging is targeted at
bootstrapping the Sematic Web. In this context, the creation of explicit and formal se-
mantic markup is imperative since machine-understandable markup is a prerequisite for
automated reasoning. The Semantic Web approach to text annotation hence necessitates
pre-defined formal ontologies. In contrast, our framework transforms text documents
into explicitly and informally annotated XML documents and does not require a formally
defined ontology. Furthermore, the DIAsDEM framework incorporates an explorative
knowledge discovery approach to reduce human intervention. Unlike the representative
IE-based and NLP-focused work introduced above, our framework neither requires se-
mantically tagged training documents nor relies on existing sophisticated semantic lexica.
Instead, explorative knowledge discovery techniques (i.e., clustering algorithms) are uti-
lized to discover domain-specific, content-descriptive XML tags, which are subsequently
aggregated into a concept-based XML document type definition.

2.3.3 Automated Semantic Text Annotation

This subsection introduces representative research into automated semantic text markup.
In contrast to both manual and semi-automated approaches, we subsequently focus on
techniques that do not incorporate human knowledge into the tagging process. Although
mostly relying on an existing and mainly semi-automatically set up knowledge base,
domain-independent techniques are considered to support automatic markup. Unlike their
semi-automated counterparts, these techniques can be straightforwardly applied to text
archives comprising general content without the need for re-parameterization. Existing
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automatic markup tools mainly extract and semantically annotate named entities.

Focus on Information Extraction AeroDAML utilizes information extraction tech-
niques to alleviate the human effort required to semantically mark up textual resources
published on the Web (Kogut and Holmes, 2001; Kogut and Heflin, 2003). Given a
URI, the corresponding resource is downloaded and automatically marked up by explicit
and formal annotations in the DAML (cf. Fensel, 2004, p. 44) knowledge representa-
tion language. AeroDAML annotates proper nouns, common nouns, and other named
entities that instantiate concepts and relationships defined in a DAML ontology. In ad-
dition to mapping typical named entities (e.g., persons) onto concepts, common nouns
(e.g., ‘gun’) are identified as instantiations of the respective concepts (e.g., ‘weapon’).
Furthermore, pre-defined relationships, such as ‘person works for company’, can be in-
stantiated as well. AeroDAML is built on top of a proprietary text mining system,
utilizes domain-independent rules for proper noun extraction, and incorporates the lexi-
cal database WordNet (cf. Fellbaum, 1998) into its domain-independent knowledge base.
Inspired by computer-assisted translation, Kogut and Holmes proposed to automatically
mark up textual resources by default. Only if necessary, domain experts may add new or
correct generated annotations via a markup tool of their choice. AeroDAML can also
be customized to create domain-specific markup in a semi-automated way.

The semantic text annotation platform KIM is based on GATE components (cf. Cun-
ningham, 2002) for text pre-processing and information extraction (Popov et al., 2003;
Kiryakov et al., 2003; Popov et al., 2004). KIM automatically maps named entities onto
concepts that are defined in the domain-independent KIM Ontology. The KIM On-
tology is encoded in the formal ontology language RDFS (cf. Fensel, 2004, pp. 37–39)
and comprises a taxonomy of approx. 250 concepts (e.g., ‘entity’, ‘object’, and ‘prod-
uct’) along with their attributes and relationships among them. In addition, information
extraction in KIM takes advantage of a massive knowledge base, which includes lexical
resources and approx. 80,000 important named entities as instantiations of the KIM On-
tology. Due to the existing KIM Ontology and the extensive knowledge base, KIM
is capable of automatically inserting explicit and formal semantic annotations into gen-
eral text documents. The system achieved 86% average precision at 82% average recall in
annotating six general-purpose named entities (i.e., date, person, organization, location,
percent, and money) in 100 news articles. After extending the knowledge base appro-
priately, KIM is also capable of marking up domain-specific text documents. However,
domain-specific text annotation is considered to be a semi-automated technique because
it requires a considerable amount of human involvement.

Dill et al. (2003) introduced Seeker, a component-based framework for large-scale
text analytics. SemTag is built on top of this framework and allows for an automated
semantic annotation of pre-defined named entities in large text corpora. Dill et al. aimed
at bootstrapping the Semantic Web (cf. Berners-Lee et al., 2001) by automatically anno-
tating textual content with a set of domain-independent, widely usable named entities.
SemTag strongly relies on the semi-automatically compiled TAP Knowledge Base
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(cf. Guha and McCool, 2003) that comprises lexical and taxonomic information about
approx. 72,000 important entities, such as ‘musicians’, ‘movies’, and ‘athletes’. Neverthe-
less, SemTag is considered to be an automated annotation tool because this application
marked up 434 million named entities in 264 million Web-based resources and achieved a
tagging accuracy of around 82%. This Web-scale experiment required negligible human
involvement (i.e., approx. 700 yes/no decisions) because Dill et al. automatically resolved
ambiguities by executing a taxonomy-based disambiguation algorithm. After identifying
named entities listed in the TAP Knowledge Base, ambiguous strings (e.g., ‘Michael
Jordan’ may be a basketball player or a statistician) are disambiguated on the basis of
context terms. All generated annotations are represented as RDFS (cf. Fensel, 2004,
pp. 37–39) statements. These annotations are stored separately from marked-up content
and thus facilitate flexible semantic Web services.

Gruhl et al. (2004) gave an overview on WebFountain, an architecture for very large-
scale text analytics that is based on Seeker and SemTag. The platform allows access
to different sources, supports the scalable deployment of document-level text enrichment
and corpus-level analysis, as well as the creation of Web services that serve end-user
applications. Alba et al. (2006) discussed challenges and lessons learned when building
this Web-scale system that collects, analyzes, stores, and serves billions of documents.

Assessment Ideally, human involvement in generating semantically enriched content
should be completely eliminated to facilitate large-scale semantic services. As illustrated
by the research reviewed above, however, fully automated text annotation techniques
are currently capable of identifying and marking up domain-independent named entities
only. These techniques take advantage of the vast literature on extracting named enti-
ties and relational tuples from unstructured text (cf. Subsection 2.2.2). In contrast, our
semi-automated framework for semantic XML tagging pursues different objectives in two
important aspects. Firstly, we employ explorative knowledge discovery techniques to find
content-descriptive XML tags that briefly summarize the textual content of text units.
Thereby, textual content is mapped onto high-level semantic concepts, such as ‘Acquisi-
tionAnnouncement’, and extracted named entities are placed in the context of conceptual
tags. Secondly, our framework is designed to transform domain-specific, as opposed to gen-
eral, text archives into XML documents conforming to an archive-specific XML document
type definition. In contrast, all reviewed automatic markup tools assume the existence
of domain-independent knowledge in a lexical database or generic ontology, which was
manually or semi-automatically codified or acquired by a third party. The existence of
appropriate knowledge bases can hardly be assumed for a variety of specific domains.
Hence, the development of fully automated markup techniques for domain-specific texts
remains an open research challenge (cf. Reeve and Han, 2005, p. 1434).
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2.4 Schema Discovery in Marked-Up Text Documents

The DIAsDEM framework transforms domain-specific texts into semantically annotated
XML documents and semi-structured data, respectively. As introduced in Section 1.1,
‘self-describing’ semi-structured data do not adhere to a rigid and explicitly defined
schema, but rather exhibit some structure and may implicitly conform to a loose schema
(Buneman, 1997; Wang and Liu, 2000, p. 353). In our framework, however, each collec-
tion of semantically tagged XML documents conforms to a concept-based XML document
type definition. This automatically derived XML DTD serves as a context-free grammar
for all XML documents and thus constitutes a loose schema that specifies the internal
structure of annotated XML documents (cf. Abiteboul et al., 2000, pp. 38–45).

Albeit imposing only loose structural constraints, XML document type definitions offer
substantial advantages in storing, processing, and querying the respective collections of
XML documents (Garofalakis et al., 2003, p. 24). In principle, these benefits accrue from
the fact that a document type definition specifies a regular expression pattern for each
DTD element, which must be matched by all sequences of DTD elements occurring therein.
Unfortunately, XML documents do not have to conform to a document type definition
(cf. World Wide Web Consortium, 2000). Consequently, the question of deriving an XML
document type definition from a given collection of XML documents constitutes a research
issue of practical importance. The discovery of a typically loose schema for marked-up
textual data is an issue relevant to our research questions although we limit ourselves
to establishing an XML document type definition that enumerates frequently occurring
thematic concepts and associated named entity types.

Since XML documents are instances of semi-structured data in many respects (cf. Garo-
falakis et al., 2003, p. 24), we firstly survey representative approaches to schema discovery
in conventional semi-structured data. Subsequently, techniques for inferring a document
type definition from a collection of SGML or XML documents are reviewed. Due to the
missing relevance to our research, we do not discuss approaches that require an existing
DTD as input. This criterion is, for example, met by research into inferring a reduced
DTD from a complex DTD and a sample of marked-up documents (e.g., Bia et al., 2001)
and by techniques for aggregating several document-specific source DTDs into one com-
mon DTD (e.g., Sengupta and Purao, 2000). Finally, this subsection is concluded by
assessing the reviewed work with respect to our pursued research questions.

Schema Discovery in Semi-Structured Data Collections of semi-structured documents
are usually modeled as graphs (cf. Buneman, 1997; Abiteboul et al., 2000, pp. 11–13).
For example, the Object Exchange Model (OEM; Papakonstantinou et al., 1995)
can be conveniently represented by a labeled, directed graph. Vertices correspond to
uniquely identifiable OEM objects in OEM graphs, and edges convey semantic informa-
tion about the relationship between connected objects via descriptive textual labels (e.g.,
has_company). Labeled vertices without outgoing edges represent typed atomic values
(e.g., the string "Giant Foo Corp."). The remaining vertices represent complex objects
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comprising a set of subordinate OEM objects.
Goldman and Widom (1997) introduced an algorithm to derive concise and accu-

rate structural summaries (i.e., DataGuides) for collections of OEM encoded semi-
structured documents. Serving as collection-specific schemata, DataGuides enable users
to grasp an understanding of the collection structure prior to formulating queries. Anal-
ogously to data dictionaries in relational databases, DataGuides facilitate optimized
query processing by providing structural metadata.Unlike data dictionaries, DataGuides
are dynamically derived from the data themselves and do not enforce any constraints on
the document collection. DataGuides are OEM graphs that reflect structural features
(i.e., labeled edges that connect placeholder vertices) occurring at least in one document.
In the worst case, constructing a DataGuide for arbitrary OEM graphs is exponential
in time and space with respect to the graph size. When applied to OEM trees, however,
the algorithm has a linear complexity.

Experimental results indicate that DataGuides are significantly smaller than typical
OEM source collections (Goldman and Widom, 1997, p. 438). Nevertheless, the size of
accurate schemata, like DataGuides, may be quite large unless the described documents
share a very similar structure. Complex schemata tend to exacerbate interactive structure
exploration as well as automated query optimization. To balance the need for compact
schemata against schema accuracy requirements, Goldman and Widom (1999) as well as
Nestorov et al. (1998) presented distinct approaches to extracting an approximate, yet
sufficiently detailed, schema from semi-structured documents.

Domain-specific semi-structured documents are often similarly, though not identically,
structured. To reveal frequently occurring structural elements, Wang and Liu (2000) pro-
posed an algorithm that discovers typical graph structures in a collection of OEM encoded
documents. The authors extended the Object Exchange Model (Papakonstantinou
et al., 1995) such that vertices of the directed OEM graph may represent complex objects
that comprise either an ordered list or an unordered set of subordinate OEM objects.
Furthermore, Wang and Liu generalized the problem of discovering association rules sup-
ported by a minimum number of transactions (cf. Agrawal et al., 1993; Agrawal and
Srikant, 1994). Consequently, the minimum frequency of interesting structural elements
must be specified by the user. Subsequently, the algorithm searches partial graph struc-
tures (i.e., so-called tree expressions) whose frequency of occurrence in all source OEM
graphs exceeds the user-supplied threshold.

Schema Discovery in SGML/XML Documents Since an archive of SGML documents
may lack a document type definition, Ahonen (1995, 1996) studied the problem of auto-
matically establishing a DTD for a given collection of SGML documents. Ahonen con-
ceptualized and validated a generic method for generating a context-free grammar from
a set of marked-up documents. Initially, the structure of input documents is completely
captured by creating a finite-state automaton for each structural element. Thereafter,
machine learning techniques are employed to generalize these automata and subsequently
convert them into regular expressions. Finally, a grammar is constructed from the result-
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ing regular expressions that makes explicit the internal document structure. Specifically,
this method derives archive-specific SGML document type definitions, which (unlike triv-
ial ones) are neither too generalized nor too restrictive.

Shafer (1996) introduced a method for automated inference of SGML DTDs, which
resembles the approach pursued by Ahonen (1996). Shafer employed the proprietary
Grammar Builder Engine to infer a grammar from tagged documents. Firstly, struc-
tural rules representing SGML tags and their nestings are extracted from input documents.
Subsequently, sophisticated heuristics are applied to combine, generalize, and reduce these
structural rules before the resulting grammar is finally output as an SGML DTD. Both
Shafer and Ahonen approached the problem of generating a DTD from a set of SGML
documents as an application of deterministic grammar inference. In contrast, Young-Lai
and Tompa (2000) advocated a technique based on stochastic grammar inference, which
takes frequency information from the training documents directly into consideration. Ac-
cording to Young-Lai and Tompa, stochastic grammar inference scales better to large
collections and creates models with richer semantics.

DTD-Miner automatically extracts a document type definition from XML documents
in a three-step process (Moh et al., 2000b,a). Firstly, the hierarchical internal structure of
each XML document is transformed into an ordered n-ary tree whereby tags are modeled
as labeled vertices. Since XML documents may be structurally dissimilar even in the
same archive, Moh et al. (2000a) suggested utilizing a graph-based clustering algorithm
to identify structurally homogeneous sub-collections. Secondly, all document trees are
merged into one ordered, directed, acyclic graph that represents the overall structural
information about XML tags, their hierarchical relationships, and attributes. Finally,
heuristic rules are applied to modify this spanning graph before generating an XML DTD.
In particular, heuristics distinguish optional from mandatory DTD elements, identify
repeatable DTD elements, and find appropriate groups of repeatable DTD elements.

Garofalakis et al. (2000, 2003) described the XTRACT system, which comprises al-
gorithms to infer an XML document type definition from XML documents. The authors
specifically focused on exploiting the full expressive power of regular expressions sup-
ported by the DTD syntax to automatically establish both concise and precise document
type definitions. To that end, generalization and factorization algorithms create several
candidate DTDs by employing heuristics and logic optimization techniques. However, the
most important step involves choosing the ‘best’ document type definition from all candi-
date DTDs by applying the minimum description length principle rooted in information
theory. Thereby, the tradeoff between ‘conciseness’ and ‘preciseness’ of DTDs is taken
into consideration by balancing these two desired characteristics of XML document type
definitions. Min et al. (2003) introduced a simplified and heuristic approach to DTD ex-
traction and reported that this technique derived highly concise and accurate real-world
document type definitions up to 20 times faster than XTRACT.

Ling et al. (2005) introduced the semantically rich Object Relationship Attribute
Data Model for Semi-Structured Data (ORA-SS) to overcome limitations of ex-
isting data models, such as OEM or DataGuides. According to Ling et al. (2005,
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pp. 57–58), ORA-SS combines concepts central to semi-structured data models (e.g.,
references, ordering of object classes and attributes, and document instances) with tradi-
tional data modeling concepts, like binary and n-ary (n > 2) relationships, participation
constraints on object classes participating in relationships, as well as inheritance hierar-
chies between object classes. This data model consists of a schema diagram, an instance
diagram, a functional dependency diagram, and an inheritance hierarchy diagram. Be-
sides defining ORA-SS, Ling et al. (2005, pp. 56–75) proposed an algorithm designed to
extract an ORA-SS schema from a semi-structured data instance, such as an XML docu-
ment. The authors suggested employing a semi-automated, rule-based algorithm that is
highly focused on data-centric, as opposed to text-centric, XML documents. Subsequent
to generating an initial schema in the first extraction step, user input is required to verify
schema properties derived from the data in the second, schema-refining step.

Assessment The rapid emergence of SGML and XML for encoding various kinds of
data sparked a large body of research into schema discovery in marked-up documents.
Since neither SGML nor XML documents have to be accompanied by a document type
definition, automatically inferring a DTD for a given collection of marked-up documents
is an efficient means of enjoying the considerable DTD-induced benefits.

As illustrated by the representative work reviewed above, schema discovery in marked-
up documents is mostly a solved research issue. A variety of experimentally validated
methods is available to researchers and practitioners. These techniques often rely on
graph-based representations and sophisticated heuristics to infer an intuitively usable,
both concise and accurate DTD from marked-up documents. These methods are com-
plementary to the research questions addressed in this work since we primarily aim at
marking up unstructured text units with domain-specific, conceptual XML tags discov-
ered beforehand. Nevertheless, semantic XML tags are aggregated into a concept-based
XML document type definition. Establishing an enumerative XML document type def-
inition is sufficient because our framework does not encompass the creation of nested
markup. Once the insertion of nested XML tags is fully supported in the future, however,
an existing method for automatic inference of non-trivial XML document type definitions
can easily be incorporated into our framework.

2.5 Summary

In this chapter, we have reviewed work related to semantic XML tagging, as defined in the
introductory Section 1.2. We have given an overview of fundamental text processing re-
search areas, as well as specific research into topic discovery, semantic text annotation, and
schema discovery in marked-up documents. However, the assessments of individually sur-
veyed research areas remain to be integrated. To that end, we delineate our approach from
directly related work on semantic text annotation and highlight its multi-disciplinarity.
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Figure 2.2: Fundamental and Complementary Research Areas of the DIAsDEM Frame-
work for Semantic XML Tagging of Domain-Specific Text Archives

Semantic XML Tagging Unlike other approaches to semantic text annotation, we in-
vestigate the content-descriptive markup of fine-grained structural text units, such as
sentences or paragraphs. In principle, our semi-automated framework is capable of en-
hancing applications that, for quality reasons, currently rely on manual text annotation.
Current techniques for automated semantic markup are restricted to the annotation of
generic named entities and often strongly rely on existing knowledge bases. After going
through an initial knowledge discovery phase, our framework instead allows for an auto-
mated conversion of domain-specific texts into conceptually marked-up XML documents.

For each new domain, an interactive knowledge discovery process must be accomplished
once. This process is designed to discover domain-specific, concept-based XML tags for
a given text collection and to derive a matching concept-based XML document type def-
inition. Unlike most research into semi-automated markup, we neither solely concentrate
on named entity extraction nor restrict ourselves to mapping textual content onto pre-
defined semantic concepts. Instead, our framework combines research into topic discovery
(i.e., identifying semantic XML tags) and named entity recognition (i.e., augmenting XML
tags). Subsection 2.2.2 has revealed that the originally posed research question related
to the extraction of domain-specific named entities from text units can be considered
solved by the information extraction research community for the scope of this work. Fur-
thermore, our approach does not require a formal ontology as input because we aim for
informally annotating text documents. Instead, we suggest incorporating domain knowl-
edge in the form of a controlled vocabulary, which can usually be established with less
effort. Subsequent to the knowledge discovery phase, documents from the same domain
are automatically marked up without any human intervention.
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Multi-Disciplinary Approach Due to the complexity of inferring semantics from text
documents, we adopt an inherently multi-disciplinary approach to semantic XML tag-
ging. As the pyramid in Figure 2.2 illustrates, knowledge discovery in textual databases
is the fundamental discipline. To attain our objectives, we selectively utilize methods
from information retrieval (e.g., text pre-processing), topic discovery (e.g., employing
unsupervised learning techniques), and named entity recognition. Furthermore, dashed
arrows indicate three major complementary research areas. For example, complementary
research into automatic learning of controlled vocabularies may be utilized to further re-
duce human efforts in the knowledge discovery phase. In addition, complementary work
on schema discovery in marked-up documents and extraction of relational tuples from
text might be exploited to post-process semantically tagged XML documents.

Intermediate Conclusion The semi-automatic DIAsDEM framework occupies an im-
portant and clearly-defined niche in the continuum of requirements for semantic XML
tagging of textual data. Specifically, our framework enables explicit, informal, and high-
quality semantic markup of large, domain-specific text archives whose documents share a
common sublanguage. Distinctive characteristics of our framework are the application of
explorative knowledge discovery techniques to identify thematic concepts at the text unit
level as well as the combination of content-descriptive text annotation and named entity
extraction. Our framework is introduced in detail in the next chapter.
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Chapter 3 outlines the DIAsDEM framework for semantic XML tagging of domain-
specific text archives. This conceptual framework provides a high-level solution to the
research questions raised in the introduction. In the next section, we clarify the most
important terminology for the scope of this work. Section 3.2 presents the principal
objectives of our framework and gives a concise overview thereof. The subsequent Sec-
tions 3.3 and 3.4 outline the semi-automated knowledge discovery phase and the fully
automated knowledge application phase, respectively.

3.1 Terminology

According to Definition 1, the central term semantic XML markup denotes XML tags
whose names explicitly convey informal metadata about the meaning of marked-up text
units. Semantic XML tags concisely describe concepts that domain experts typically
associate with marked-up text units. Optionally, attributes of semantic tags make explicit
named entities occurring in annotated text units. The syntax of semantic XML markup
is defined in a concept-based XML document type definition whereas the meaning of
semantic XML markup is informally specified in the accompanying DTD documentation.

In this subsection, we define fundamental terms, such as text document, text unit, and
semantically marked-up text document. Each fundamental, framework-specific term is
accompanied by a corresponding abstract data type specified in Appendix B. An abstract
data type (ADT) is a class “of objects whose logical behavior is defined by a set of values
and a set of operations” (Dale and Walker, 1996, p. 3). Although ADTs are precisely
defined, they are independent of any particular implementation in a programming lan-
guage (Guttag and Horning, 1978, p. 27). The set of values encapsulated by an abstract
data type can only be accessed and modified via the set of valid operations, which is
referred to as the interface. This principle of hiding implementation details by providing
a well-defined interface is known as encapsulation (cf. Loeckx et al., 1996, p. 11). We
define and subsequently utilize1 abstract data types related to semantic XML tagging of
text archives because they allow for a high-level description of required data structures,
as well as characteristic properties and operations.

1Notation: Let x: T denote a variable x of type T that can be either a primitive data type described in
Appendix B.1 (i.e., Boolean, Integer, Real, Char, and arrays) or an abstract data type (e.g., String)
specified in the remainder of Appendix B. If T is an abstract data type and o(·) is an operation thereof,
x.o(·) denotes the execution of operation o(·) on the instantiation x of abstract data type T.
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Computer-accessible text documents may conform to a variety of internal format speci-
fications. The DIAsDEM framework, however, abstracts from this diversity in formats
and only considers archives that comprise plain text files. Since our framework is delib-
erately restricted to alphabet-based languages whose characters are interpreted from left
to right, text documents2 are modeled as sequences3 of characters:

Definition 2 (Text Document) A text document ť: String is a sequence of characters.

In particular, we abstract from specific character encoding schemes, but assume the
existence of characters, such as the blank space (i.e., " "), letters (e.g., "A", "a", or "ä"),
digits (e.g., "0"), punctuation marks (e.g., "."), and special characters (e.g., "$", line
feed, or tab stop). So-called whitespace characters, like the blank space or the tab stop,
potentially separate natural language words (cf. Manning and Schütze, 1999, p. 125).
The abstract data type TextDocument (see Appendix B.4 on page 220) encapsulates one
text document. Given the exemplary text ť1 : TextDocument and ť1.create("New York:

The contract was signed on Dec. 30, 2006."), ť1.length() = 51, ť1.char(9) = ":",
ť1.char( ť1.length() ) = ".", and ť1.chars(38, 50) = "Dec. 30, 2006".

The ADT TextArchive (see Appendix B.5 on page 221) encapsulates one text archive.
Due to the possibility of duplicate documents, text archives are modeled as follows:

Definition 3 (Text Archive) A text archive ǎ := 〈ť1, ť2, . . . , ť|ǎ|〉 is a sequence of not
necessarily distinct text documents such that ťi: TextDocument, where i = 1, 2, . . . , |ǎ|.

Instead of disambiguating the sense of single terms (cf. Manning and Schütze, 1999,
pp. 229–263), our framework enables the semantic markup of structural text units:

Definition 4 (Text Unit) Given the text document ť : TextDocument, a text unit ǔ :
String is a sequence of contiguous characters in ť such that ǔ = ť.chars(i, j), where
i = 1, 2, . . . , ť.length() and j = i, i + 1, . . . , ť.length(). A text unit represents a struc-
tural text component that consists of more than one natural language word.

Structural text units can be fine-grained (e.g., sentences), coarse-grained (e.g., para-
graphs), or even comprise entire text documents. The ADT TextUnit (see Appendix B.6
on page 221) encapsulates one text unit. Let ǔ1: TextUnit denote the text unit that is
instantiated by ǔ1.create(ť1, 11, 51) to encapsulate the sentence ť1.chars(11, 51) = "The

contract was signed on Dec. 30, 2006." Thus, ǔ1.length() = 41, ǔ1.startIndex() =
11, and ǔ1.endIndex() = 51. As part of the document pre-processing prior to semantic
tagging, text documents are decomposed into text units of the required granularity. The
resulting decomposition is henceforth referred to as a text unit layer:

2Hereafter, text documents are synonymously referred to as textual data and text, respectively.
3Notation: Let the set X denote an arbitrary domain. A non-empty sequence x := 〈x1, x2, . . . , xi〉 is a
tuple comprising i ∈ N ordered elements x1, x2, . . . , xi such that xj ∈ X, where j = 1, 2, . . . , i. The
number of elements |x| ∈ N in sequence x (i.e., its length) is not necessarily constant. The jth element
in sequence x is denoted by x[j], where j = 1, 2, . . . , |x|. An empty sequence is denoted by ε (|ε| = 0).
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Definition 5 (Text Unit Layer) Given the text document ť: TextDocument, a text unit
layer is a decomposition of text document ť into structural text units. Text unit layer
ř := 〈ǔ1, ǔ2, . . . , ǔ|̌r|〉, where ǔi: TextUnit and i = 1, 2, . . . , |̌r|, is a sequence of ordered and
not necessarily contiguous, but non-overlapping, text units in text document ť.

One text unit layer is encapsulated by the abstract data type TextUnitLayer (see Ap-
pendix B.7 on page 222). In principle, text documents may be decomposed into multiple
text unit layers that have different structural characteristics. For instance, the text unit
layer ř1: TextUnitLayer decomposes text document ť1 into dateline and news item, namely,
"New York" and "The contract was signed on Dec. 30, 2006." Alternatively, text
unit layer ř2 : TextUnitLayer splits the same document into grammatical sentences and
thus only comprises the text unit corresponding to the second string. To further concep-
tual clarity, our framework is deliberately restricted to process exactly one text unit layer
per text document. Future extensions, however, are straightforward.

We now proceed by formalizing our notion of semantic XML markup. As informally
introduced in Section 1.2, semantic markup associates text units with content-descriptive
concepts and named entities occurring therein. To achieve conceptual clarity, however,
we abstract from syntax-related issues of outputting marked-up textual data as XML
documents in this subsection. Before defining semantically marked-up text units, the
notions of concepts and named entities introduced in Section 1.2 are clarified as follows:

Definition 6 (Concept) Given the domain-specific text archive ǎ: TextArchive, a concept
is a mental reference or thought that domain experts typically associate with a group of
semantically similar text units occurring in text documents of ǎ. A concept is represented
by a symbol o ∈ O from the domain-specific set of concepts O := {o1, o2, . . . , o|O|}.

The abstract data types Concept (see Appendix B.8 on page 222) and SetOfConcepts
(see Appendix B.9 on page 223) encapsulate one concept and one set of concepts, respec-
tively. As emphasized in Section 1.2, there is a clear semiotic distinction between symbols
on the one side and mental references, thoughts, or concepts on the other. Unless otherwise
stated, however, we henceforth directly refer to symbol o ∈ O as the thematic concept o
to simplify our notation. Alphanumeric labels of concepts (e.g., ConclusionOfContract
associated with the concept conclusionOfContract ∈ O1) ultimately serve as names of
semantic XML tags. Named entities are modeled as 2-tuples4:

Definition 7 (Named Entity) Let P := {p1, p2, . . . , p|P|} denote a set of domain-specific
named entity types that represent abstract classes and generic numerical expressions.
Given the text unit ǔ : TextUnit, a named entity e := (p : P, ě : String) identified in

4Notation: A k-tuple x := (x1, x2, . . . , xk) comprises k ∈ N ordered elements x1, x2, . . . , xk. If the sets
Xi, where i = 1, 2, . . . , k, denote k arbitrary domains, then x := (x1 : X1, x2 : X2, . . . , xk : Xk) defines
a k-tuple such that xi ∈ Xi. The number of elements |x| = k in k-tuple x (i.e., its arity) is constant.
Elements xi of k-tuple x may take the null value (i.e., xi = null) if xi is unknown, inappropriate, or
non-existent. The ith element in k-tuple x is denoted by x[i].

59



3 DIAsDEM Framework

text unit ǔ is a 2-tuple comprising its named entity type p and the canonical form ě of the
instantiated named entity type p in text unit ǔ. A set of distinct named entities is denoted
by E := {e1, e2, . . . , e|E|}.

Given the set of named entity types P1 := {company, person, date}, the named entities
e1 := (date, "2006-12-30") and e2 := (date, "Day=30; Month=Dec; Year=2006") can,
for example, be extracted from the text unit "New York: The contract was signed on

Dec. 30, 2006." Although named entities e1 and e2 refer to the same instantiation of
named entity type date in this text unit, they have distinct canonical forms. Alphanumeric
labels of named entity types, like Date, and canonical named entity forms, like "2006-12-
30", ultimately serve as names and values, respectively, of attributes that represent the
respective named entities within semantic XML tags. The extent to which named enti-
ties are normalized is application-dependent. The abstract data types NamedEntityType
(see Appendix B.10 on page 223) and SetOfNamedEntityTypes (see Appendix B.11 on
page 224) encapsulate one named entity type and one set of named entity types, re-
spectively. Additionally, one named entity and one set of named entities is encapsu-
lated by the abstract data types NamedEntity (see Appendix B.12 on page 224) and
SetOfNamedEntities (see Appendix B.13 on page 225), respectively.

Definition 8 (Semantically Marked-Up Text Unit) Given the parent text document ť :
TextDocument, a semantically marked-up text unit û := (ǔ: TextUnit, o: Concept, E: Set-
OfNamedEntities) is a 3-tuple comprising the original text unit ǔ, the domain-specific
concept o that domain experts typically associate with text units similar to text unit ǔ,
and the set of named entities E extracted from text unit ǔ.

A semantically marked-up text unit is encapsulated by the abstract data type Smu-
TextUnit (see Appendix B.14 on page 225). For example, the semantically marked-up
text unit û1: SmuTextUnit associates the original text unit ǔ1, which represents the sen-
tence "The contract was signed on Dec. 30, 2006.", with the concept conclusion-
OfContract and a set of named entities that merely includes the identified named entity
e1 = (date, "2006-12-30"). To proceed, we extend our notions of text unit layers, text
documents, and text archives by defining their marked-up counterparts:

Definition 9 (Semantically Marked-Up Text Unit Layer) Given the text unit layer ř :
TextUnitLayer, a semantically marked-up text unit layer r̂ := 〈û1, û2, . . . , û|̂r|〉 is a se-
quence of semantically marked-up text units such that ûi: SmuTextUnit and ûi.textUnit()
= ř.textUnit(i), where i = 1, 2, . . . , ř.size().

Definition 10 (Semantically Marked-Up Text Document) Given the text document ť:
TextDocument, a semantically marked-up text document t̂ := (ť: TextDocument, r̂: Smu-
TextUnitLayer) is a 2-tuple comprising the original text document ť and the semantically
marked-up text unit layer r̂ that represents a decomposition of text document ť into se-
mantically marked-up text units.

60



3.1 Terminology

Definition 11 (Semantically Marked-Up Text Archive) Given the text archive ǎ: Text-
Archive, a semantically marked-up text archive â := 〈t̂1, t̂2, . . . , t̂|â|〉 is a sequence of not
necessarily distinct, semantically marked-up text documents such that t̂i: SmuTextDocu-
ment and t̂i.textDocument() = ǎ.textDocument(i), where i = 1, 2, . . . , ǎ.size().

Consequently, the abstract data types SmuTextUnitLayer (see Appendix B.15 on page
226), SmuTextDocument (see Appendix B.16 on page 226), and SmuTextArchive (see
Appendix B.17 on page 227) encapsulate the respective framework-specific objects.

Besides semantically tagging text archives, we aim at inferring a concept-based XML
document type definition. Again disregarding syntax issues of creating XML DTDs, we
introduce the notion of conceptual document structures. A conceptual document structure
encapsulates the necessary information for generating a concept-based XML DTD. This
DTD reflects the thematic structure of marked-up documents on the text unit level by
enumerating existing concepts and associated named entity types.

Definition 12 (Conceptual Document Structure) Given the semantically marked-up
text archive â: SmuTextArchive, the set Â = {û | û: SmuTextUnit := â.smuTextUnit(j, kj)
∀ j = 1, 2, . . . , â.size() ∀ kj = 1, 2, . . . , â.smuTextUnitLayerSize(j)} contains all distinct,
semantically marked-up text units in â. The archive-specific set Oâ := {o | o: Concept :=
û.concept() ∀ û: SmuTextUnit ∈ Â} contains all concepts occurring in â. A conceptual
document structure ŝ := (̌l, o, p) is a 3-tuple comprising an alphanumeric label ľ: String
that concisely describes the common theme of text documents covered by ŝ, the sequence
of concepts o := 〈o1, o2, . . . , o|Oâ|〉, where oi ∈ Oâ for i = 1, 2, . . . , |Oâ|, the sequence of
possibly empty sets p := 〈P1, P2, . . . , P|Oâ|〉, where Pi := {p | p : NamedEntityType :=

û.distinctNamedEntityTypes()[l] ∀ û : SmuTextUnit ∈ Â s.t. û.concept() = oi ∀ l =
1, 2, . . . , û.distinctNamedEntityTypes().size} represents the types of named entities ex-
tracted from text units associated with concept oi. The semantically marked-up text archive
â conforms to conceptual document structure ŝ.

The ADT ConceptualDocumentStructure (see Appendix B.18 on page 227) encap-
sulates one conceptual document structure. Although we abstract from syntactical is-
sues related to generating XML document type definitions from conceptual document
structures as well as transforming semantically marked-up text documents into XML
documents, this ADT nevertheless defines the corresponding operations xmlDtd() and
xmlDocuments(â: SmuTextArchive) for the purposes of making explicit the objectives of
our framework and providing an overview thereof in the next section.

The DIAsDEM framework adopts a knowledge discovery approach to semantic text
annotation. In Section 2.1.1, we have emphasized that knowledge discovery is an in-
herently process-oriented activity. We have described the generic process of discovering
knowledge in textual databases. Since our framework involves a specific KDT process
comprising multiple algorithms, we finally introduce our notion of KDT process flows:
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Definition 13 (KDT Process Flow) Let g(·) denote an arbitrary, parameterizable KDT
algorithm for selecting, pre-processing, or transforming textual data, or for discover-
ing, interpreting, or evaluating patterns. A specific, parameterizable KDT process flow
f := 〈g1(·), g2(·), . . . , g|f|(·)〉 is a sequence of KDT algorithms that must be parameterized
and executed in the order of their occurrence in f to accomplish the objectives of the re-
spective KDT process. Let g̃(·) denote an arbitrary, parameterized KDT algorithm. A
parameterized KDT process flow is denoted by f̃ := 〈g̃1(·), g̃2(·), . . . , g̃|̃f|(·)〉.

In our knowledge discovery context, the KDT process flow f is modeled as a sequence
of algorithms because algorithm gi+1(·), where i = 1, 2, . . . , |f| − 1, typically requires the
output generated by its predecessor gi(·) as input. Considering possibilities for a potential
parallel execution of several KDT algorithms is beyond the scope of this work.

The abstract data types KdtAlgorithm (see Appendix B.19 on page 228) and KdtPro-
cessFlow (see Appendix B.20 on page 229) encapsulate one KDT algorithm and one KDT
process flow, respectively. These abstract data types represent both parameterizable and
fully parameterized algorithms and process flows, respectively. In the former case, KDT
algorithms do not yet contain parameter values.

3.2 Objectives and Overview

Providing a compelling solution to the research questions stated in Section 1.4 constitutes
the main objective of the DIAsDEM framework. The conceptual framework, along with
its prototype implementation, addresses the following primary research question:

Can techniques for knowledge discovery in textual databases be employed to
convert large archives comprising domain-specific text documents of homoge-
neous content into semantically marked-up XML documents?

In Section 1.2, we have informally introduced the framework-specific notion of semanti-
cally marked-up XML documents. As part of the literature review, the research discipline
of knowledge discovery in textual databases has been concisely introduced in Subsec-
tion 2.1.1. The key terms text document, text archive, and text archive, along with their
semantically marked-up counterparts, have been defined in the preceding section. We
intentionally restrict the applicability of our framework to text archives that exhibit the
following characteristics:

• All input text documents are composed of characters from an arbitrary, finite al-
phabet whose characters are interpreted from left to right.

• Furthermore, the text archive contains domain-specific, as opposed to general, docu-
ments of relatively homogeneous content. The text documents to be marked up do
not comprise narrative or literary text, but rather consist of expository text that
explicitly explains, teaches, or states something (cf. Hearst, 1997, p. 35).

62



3.2 Objectives and Overview

• Moreover, a natural clustering tendency (cf. Jain and Dubes, 1988, pp. 201–202) is
observed at the selected text unit level of the archive. Trying to identify frequently
occurring concepts at the text unit level only makes sense if text units exhibit a
predisposition to cluster into natural groups of semantically similar content.

• Finally, the input text archive is both large and potentially valuable enough to
outweigh the costs of employing human domain and KDT experts, which incur
during the initial, inherently semi-automated knowledge discovery phase.

To sum up, our framework is focused on semantically annotating large, domain-specific
text archives whose documents comprise rather homogeneous content and exhibit a natural
clustering tendency at the text unit level. These prerequisites are satisfied by various kinds
of important text archives, such as public announcements of courts and administrative
authorities, quarterly and annual reports to shareholders, collections of company and
industry news, textual patient records in health care applications, as well as product and
service descriptions published on electronic marketplaces.

As an overall objective, the DIAsDEM framework adopts a knowledge discovery ap-
proach (i) to convert the domain-specific text archive ǎ: TextArchive into the semantically
marked-up text archive â: SmuTextArchive, (ii) to establish the accompanying conceptual
document structure ŝ: ConceptualDocumentStructure, (iii) to output the domain-specific
and concept-based XML document type definition ŝ.xmlDtd(), and (iv) to create the
collection of semantically marked-up XML documents ŝ.xmlDocuments(â).

Unlike text classification techniques (cf. Sebastiani, 1999), our framework neither re-
quires pre-defined thematic concepts nor relies on the existence of manually tagged train-
ing XML documents. Instead, we employ unsupervised learning, or clustering techniques,
to discover classification knowledge in unstructured text documents. Specifically, we ini-
tially acquire knowledge about frequently recurring thematic concepts at the text unit
level. Subsequently, this knowledge is exploited to classify text units by assigning them
to content-descriptively labeled concepts. To that end, the entire text archive is split
into the training archive ǎT: TextArchive and the typically larger, or even continuously
growing, application archive ǎA: TextArchive. The overall objective of our framework is
thus attained by pursuing the following two, more specific, and complementary goals:

1. Knowledge discovery: Given the domain-specific training text archive ǎT, domain
and KDT experts shall be supported in interactively parameterizing the generic,
framework-specific KDT process flow for semantic XML tagging f: KdtProcessFlow.
Thereby, training text archive ǎT is interactively transformed into semantically
marked-up text archive âT : SmuTextArchive, and the accompanying conceptual
document structure ŝ: ConceptualDocumentStructure is established. To enable a
quality assessment of semantic markup by domain experts, the XML document type
definition ŝ.xmlDtd() and the semantically marked-up XML documents ŝ.xmlDocu-
ments(âT) shall be created.
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Figure 3.1: Outline of the Two-Phase DIAsDEM Framework

2. Knowledge application: Given the application text archive ǎA, which comprises the-
matically similar text documents as the training text archive ǎT, and the fully param-
eterized KDT process flow f̃: KdtProcessFlow for semantic XML tagging, application
text archive ǎA shall be automatically transformed into the semantically marked-
up text archive âA: SmuTextArchive, which conforms to the conceptual document
structure ŝ. In addition, the collection of XML documents ŝ.xmlDocuments(âA)
shall be output. Domain experts shall be supported in monitoring the quality of
semantic XML markup.

Figure 3.1 illustrates the two-phase DIAsDEM framework for semantic XML tagging of
large, domain-specific text archives. For each new domain, the semi-automated knowledge
discovery phase must be completed only once. This explorative phase, which is outlined in
the next section, comprises several subtasks to attain the knowledge discovery objectives
stated above. Besides transforming the training text archive into a semantically marked-
up text archive, the interactive and iterative knowledge discovery process outputs an
archive-specific XML DTD and a fully parameterized KDT process flow. This process flow
encapsulates a sequence of algorithms and their respective parameter settings, which must
be executed to semantically mark up new text archives in the knowledge application phase.
As outlined in Section 3.4, huge amounts of new texts are automatically converted into
semantically annotated XML documents to achieve the knowledge application objectives
in this productive, repeatable phase.
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Figure 3.2: Knowledge Discovery Process of the DIAsDEM Framework

3.3 Knowledge Discovery Phase

In this section, the knowledge discovery phase of the DIAsDEM framework is informally
outlined whereas it is described in full detail in Chapter 4. Illustrated in Figure 3.2,
the interactive and iterative KDT process accomplishes the knowledge discovery goals
stated in the preceding section. Finding groups of thematically similar text units featuring
coherent topics is the major challenge. To meet this challenge, we employ an unsupervised
learning technique (i.e., clustering) in the pattern discovery step to identify semantically
homogeneous subgroups of text units.

Besides the training archive of text documents, a controlled vocabulary representing
domain-specific terminology and descriptions of relevant named entity types constitute
the main input to the knowledge discovery process. After purposefully choosing the level
of text unit granularity, basic text document pre-processing (e.g., text unit creation, to-
kenization, lemmatization, and optional word sense disambiguation) is performed in the
KDT pre-processing step. Additionally, named entities are extracted from text units.
Instead of removing meaningless stopwords to reduce the dimensionality, we establish a
drastically reduced feature space by selecting a limited set of terms (i.e., text unit de-
scriptors) from the controlled vocabulary. Text unit descriptors are chosen by the domain
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expert because they have to reflect important terminology of the domain. Subsequently,
all text units are mapped onto numerical text unit vectors by utilizing the vector-space
model introduced by Salton (1968, pp. 236–243; cf. Subsection 2.1.2).

In the pattern discovery step, text unit vectors, each representing one text unit, are
clustered based on similarity. The objective is to discover dense and semantically homoge-
neous clusters of text unit vectors and text units, respectively. Our KDT process is termed
iterative because a clustering algorithm is repeatedly invoked with a varying input data
set and possibly different parameter settings to identify as many groups of thematically
similar text units as possible. Our notion of iterative clustering, by repeatedly executing
a clustering algorithm, is different from the multiple passes over the input data that are
internally performed by some clustering algorithms.

In Subsection 4.3.4, we suggest algorithms that are particularly appropriate for cluster-
ing text unit vectors. Each clustering iteration outputs a set of clusters, which is automat-
ically partitioned into acceptable and unacceptable ones according to framework-specific
cluster quality criteria. A cluster of text unit vectors is qualitatively acceptable if (i) its
cardinality is sufficiently large, (ii) the corresponding text units are homogeneous, and
(iii) the text units can be content-descriptively characterized by a small number of text
unit descriptors. Text units that correspond to members of acceptable clusters approved
by the domain expert are removed from the data set for subsequent labeling. In contrast,
text units that correspond to the remaining text unit vectors assigned to unacceptable
clusters are again mapped onto numerical vectors. These text unit vectors constitute the
input data to the clustering algorithm in the next iteration. In each iteration, param-
eters of the clustering algorithm may be adjusted such that acceptable clusters become
progressively less specific in content. The clustering iteration stops if acceptable clusters
cannot be found or if the expert prefers to stop pattern discovery.

In the post-processing step, qualitatively acceptable clusters are semi-automatically as-
signed a content-descriptive label. Although cluster labels are ultimately determined by
the domain expert, cluster label suggestions are automatically formulated to assist the
expert in choosing meaningful semantic cluster labels. All default cluster labels are de-
rived from feature space dimensions (i.e., text unit descriptors) that are prevailing in the
respective cluster. The finally chosen cluster labels correspond to the names of seman-
tic XML tags, which are subsequently used to annotate the respective cluster members.
Furthermore, XML tags are enhanced by attributes that represent previously extracted
named entities. Moreover, an archive-specific, concept-based XML document definition is
automatically derived and all original text documents are transformed into semantically
marked-up XML documents that conform to this XML DTD. Finally, a fully parame-
terized KDT process flow is created that enables an automated transformation of text
documents from the same domain into semantically annotated XML documents.

To evaluate the markup quality in absence of pre-tagged test documents, a random
sample of marked-up text units is drawn and manually evaluated by domain specialists.
Analogous to supervised learning, the quality of XML tag names is in principle assessed
with respect to two error types. Firstly, a text unit may be mistakenly annotated with a
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Figure 3.3: Knowledge Application Process of the DIAsDEM Framework

semantic XML tag that does not properly reflect the content of the marked-up text unit.
Secondly, a text unit may not be annotated at all although the concept-based XML DTD
comprises a semantic XML tag that appropriately reflects the content of the untagged
text unit. Additionally, the quality of XML tag attributes and extracted named entities,
respectively, is assessed in accordance with the concept-based XML DTD.

The entire KDT process is intentionally designed to be interactive, or semi-automated,
to create semantic markup of high quality. Besides evaluating the tagging quality, domain
and KDT experts supervise the whole knowledge discovery process. In particular, human
experts establish a new, or refine an existing, domain-specific controlled vocabulary (cf.
Moens, 2000, pp. 51–53) in the pre-processing step. They also approve, modify, or reject
automatically generated cluster label suggestions in the post-processing step.

3.4 Knowledge Application Phase

Having successfully completed the initial knowledge discovery process for a domain-specific
text archive, the second phase of the DIAsDEM framework enables an automated an-
notation of text documents from the same domain. This batch-oriented and productive
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process is illustrated in Figure 3.3 and informally summarized in this section. Details
regarding the second phase of our framework are presented in Subsection 4.3.4, in Sec-
tion 4.5, and in the descriptions of two real-world case studies in Chapter 6.

A fully parameterized KDT process flow can be executed without human intervention
and thus plays a central role in applying discovered classification knowledge to documents
that are thematically similar to the training documents. Informally, the KDT process
flow is a sequence of parameterized algorithms that are executed one after the other to
annotate domain-specific text documents. In the knowledge application phase, exactly
the same pre-processing steps are performed as in the knowledge discovery phase. Instead
of iteratively clustering text unit vectors, however, vectors are iteratively classified by
assigning them to clusters and thematic concepts, respectively, identified in phase one.

In the knowledge application phase, the number of classification iterations equals the
number of clustering iterations performed in phase one. Each clustering iteration of the
KDT process is associated with a set of qualitatively acceptable, hence semantically la-
beled clusters and a set of qualitatively unacceptable clusters. These iteration-specific
clusters of text unit vectors constitute the discovered classification knowledge. In the first
classification iteration, all text unit vectors are assigned to one of the clusters discovered
in the first clustering iteration. The concrete assignment procedure depends on the char-
acteristics of the clustering algorithm employed beforehand. If clusters are represented by
centroid vectors, for example, an input text unit vector is assigned to the cluster whose
centroid vector is closest to itself, according to the utilized proximity measure. At the end
of each iteration, text units that correspond to vectors assigned to qualitatively acceptable
clusters are removed from the data set since their content-descriptive labels correspond
to the respective cluster labels. By contrast, text units whose vectors are assigned to un-
acceptable clusters are again mapped onto numerical text unit vectors. They constitute
the input data for the next classification iteration.

The post-processing step is reduced to semantically marking up original text documents.
All created XML documents adhere to the concept-based XML document type definition
established in phase one. Unlike the interactive knowledge discovery phase, no human
interventions are thus necessary to transform text documents into semantically marked-up
XML documents. Continuously monitoring the quality of automatically created markup,
however, still requires domain experts.

3.5 Summary

In this chapter, we have defined fundamental terminology for the scope of this work.
Thereafter, our two-phase DIAsDEM framework for semantic XML tagging of large,
domain-specific text archives has been introduced. For each new domain, a semi-automat-
ed knowledge discovery phase must be completed once. We have outlined an interac-
tive KDT process that iteratively discovers classification knowledge required for semantic
markup, derives a conceptual XML DTD, and creates a parameterized KDT process flow.
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3.5 Summary

By executing this process flow in the second knowledge application phase, thematically
similar text documents are automatically transformed into semantically marked-up XML
documents.
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4 DIAsDEM Knowledge Discovery
Process

As an integral component of our framework for semantic XML tagging, the DIAsDEM
knowledge discovery process has been coarsely outlined in Section 3.3. In this chapter, we
introduce the interactive and iterative knowledge discovery process in full detail. To that
end, Section 4.1 extends the framework-specific terminology by defining terms relevant for
all subsequent sections whereas more specific terminology is defined throughout this chap-
ter. As illustrated in Figure 3.2 on page 65, the KDT process consists of three main steps,
which are henceforth covered by three individual sections. Firstly, Section 4.2 describes
the necessary pre-processing of text documents. Secondly, the discovery of patterns by
means of clustering text unit vectors is discussed in Section 4.3. Thirdly, Section 4.4 ex-
plains our approach to post-processing discovered patterns to accomplish the knowledge
discovery objectives of the DIAsDEM framework. The parameterized KDT process flow
specified in Section 4.5 bridges the semi-automatic discovery and the automated appli-
cation of knowledge. Furthermore, the current extent and possible reductions of human
involvement in the KDT process are discussed in Section 4.6. Finally, this chapter is
summarized in Section 4.7.

To illustrate concepts and algorithms introduced in this chapter, we utilize the exem-
plary texts listed in Table 4.1. These five news items used for illustrative purposes are
contained in Volume 1 of the Reuters Corpus (cf. Rose et al., 2002). Each news item
comprises information concerning the definitive or likely agreement between a divesting
and an acquiring firm about the sale of a business unit. Divestitures, or so-called sell-
offs, are one form of corporate restructuring (cf. Gaughan, 2002, pp. 395–417). The item
identifier listed in the second column of Table 4.1 is the primary key of news items in
the corpus. Henceforth, these news items are referred to by means of their identifiers
ťE1: TextDocument through ťE5: TextDocument, which are listed in column three.

4.1 Terminology

Although fundamental, framework-specific terms have already been defined in Section 3.1,
additional terminology is required in the context of our knowledge discovery process. In
the preceding chapter, the number of introduced terms has been intentionally kept to
a minimum to enhance conceptual clarity. We have focused on the input side (i.e., an
archive of text documents and their components) and on the output side (i.e., a conceptual
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Table 4.1: Five Reuters News Items Used in Examples (Source: Reuters Corpus, Vol-
ume 1, English Language, 1996-08-20 to 1997-08-19; cf. Rose et al., 2002)

Reuters News Item Item Text

USA: VASCO says to sell consulting unit. VASCO Corp said it agreed to sell its con-
sulting and technical organization, VASCO Performance System, to Wizdom Systems
Inc. Terms were not disclosed. –Chicago Newsdesk 312-408-8787

16106 ťE1

USA: Helmerich to sell unit to Occidental. Helmerich & Payne Inc said Tuesday
it entered into a definitive agreement under which Occidental Petroleum Corp will
acquire its Baytown, Texas-based Natural Gas Odorizing Inc subsidiary. The total
acquisition value will be about $48 million, payable in Occidental common stock.
Closing is expected on August 30. – Chicago newsdesk 312 408-8787

17109 ťE2

USA: Weyerhaeuser may sell subsidiary. Timber giant Weyerhaeuser Company said
Monday it may sell its mortgage loan subsidiary, the Weyerhaeuser Mortgage Com-
pany. The company said it has retained the New York investment banking firm of
Goldman, Sachs & Co. to explore its strategic options with the 1,500-employee unit.
The mortgage unit, which is headquartered in Woodland Hills, Calif., originated $2.1
billion in residential first mortgages in the eight months that ended Aug. 31. The
company did not comment on the timing of its announcement or on the sale price of
the subsidiary. In early trading on the New York Stock Exchange, the stock was up
25 cents to $46.87.

71177 ťE3

USA: Miller to sell unit to Modtech. Miller Building Systems Inc said it agreed to
sell its Miller Structures Inc unit in California to Modtech Inc, a maker of modular
classrooms. Final settlement is scheduled for October 21, Miller said. Terms were
not disclosed. –Chicago Newsdesk 312-408-8787

78899 ťE4

USA: Zurn sells unit to Constellation Capitol. Zurn Industries Inc said on Tues-
day that it will sell its Zurn Mechanical Power Transmission Group to Constellation
Capital Partners LLC, for an undisclosed amount. The companies indicated that the
sale is expected to be completed by the end of November. In a statement, Philip
Knisely, president of Constellation Capital, said: “Mechanical Power Transmission
(MPT) represents an excellent platform for growth both internally and through com-
plementary additional acquisitions.” – New York Newsdesk +1 212 859 1610

115995 ťE5

document structure along with an archive of semantically marked-up text documents and
their components) of the framework. The knowledge discovery algorithms described in this
chapter, however, require additional intermediate data structures to ultimately transform
input text documents into semantically marked-up XML documents.

Analogous to Vintar et al. (2002), we create tokenized text in the pre-processing step.
To that end, our notion of tokens and tokenized text units is made explicit as follows:

Definition 14 (Token) A token w̌ : String is a sequence of characters that represents
one natural language word, one punctuation mark, one numeral, or any other atomic
and semantic-carrying character sequence. A set of distinct tokens is denoted by W̌ :=
{w̌1, w̌2, . . . , w̌|W̌|}.
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The abstract data type Token (see Appendix B.21 on page 229) encapsulates one token.
For example, the tokens w̌1 : Token := w̌1.create("New York"), w̌2 : Token := w̌2.create(
":"), w̌3: Token := w̌3.create("The"), and w̌9: Token := w̌9.create("30") are contained in
text document ť1: TextDocument, which encapsulates the string "New York: The con-

tract was signed on Dec. 30, 2006." Although whitespace characters often separate
tokens from each other, whitespace characters are preserved if they are integral parts of
natural language words, like the token "New York".

Definition 15 (Tokenized Text Unit) Given the text unit ǔ: TextUnit, a tokenized text
unit ü := 〈w̌1, w̌2, . . . , w̌|ü|〉 is a sequence of tokens identified in text unit ǔ such that w̌i:
Token, where i = 1, 2, . . . , |ü|. The set Wü := {w̌ | w̌: Token := ü[i], i = 1, 2, . . . , |ü|}
contains all distinct tokens identified in tokenized text unit ü.

The concrete number of tokens identified in a text unit depends on domain-specific re-
quirements and the specific tokenization algorithm. Issues in tokenization are discussed in
Subsection 4.2.1. By tokenizing a text unit, we intentionally ignore whitespace characters
that separate single tokens in the original text unit. One tokenized text unit is encapsu-
lated by the ADT TokenizedTextUnit (see Appendix B.22 on page 229). For instance, let
the tokenized text unit ü1: TokenizedTextUnit comprise the sequence of strings 〈"The",
"contract", "was", "signed", "on", "Dec.", "30", ",", "2006", "."〉 that corresponds
to text unit ǔ1. The operations provided by this abstract data type can be illustrated as
follows: ü1.size() = 10, ü1.token(2) represents the token "contract", and ü1.tokens(6, 9)
corresponds to the token sequence 〈"Dec.", "30", ",", "2006"〉.

In Definition 7 on page 59, we have introduced our notion of named entities. To actually
extract them from tokenized text units, intermediate named entities are required:

Definition 16 (Intermediate Named Entity) Let P := {p1, p2, . . . , p|P|} denote a set of
domain-specific named entity types that represent abstract classes and generic numerical
expressions. Given the tokenized text unit ü: TokenizedTextUnit, an intermediate named
entity ē := (p : P, ě : String, i : Integer, j : Integer, k : Integer) is a 5-tuple comprising
named entity type p, the canonical form ě of instantiated named entity type p, its unique
identifier i, as well as the start token index j and the end token index k, where j =
1, 2, . . . , ü.size() and k = j, j + 1, . . . , ü.size(), such that ü.tokens(j, k) corresponds to the
tokens that instantiate named entity type p in tokenized text unit ü. A set of distinct
intermediate named entities is denoted by Ē := {ē1, ē2, . . . , ē|Ē|}.

Given the exemplary set of named entity types P1 := {company, person, date}, the
intermediate named entity ē1 := (date, "2006-12-30", 2, 6, 9) may, for example, be ex-
tracted from the tokenized text unit ü1 introduced above. This intermediate named entity
is instantiated by tokens 6 through 9 that constitute the token sequence 〈"Dec.", "30",
",", "2006"〉. The abstract data types IntNamedEntity (see Appendix B.23 on page 230)
and SetOfIntNamedEntities (see Appendix B.24 on page 231) encapsulate one intermedi-
ate named entity type and one set thereof, respectively.
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As we adopt the IR vector-space model outlined in Subsection 2.1.2, pre-processed text
units are mapped onto numerical text unit vectors to enable pattern discovery.

Definition 17 (Text Unit Vector, Preliminary Definition) A text unit vector u ∈ R
n,

where n ∈ N, is an n-dimensional vector.

Characteristic properties of text unit vectors, such as the semantics of vector dimensions
and components, are defined in Subsection 4.2.5. One text unit vector is encapsulated by
the abstract data type TextUnitVector (see Appendix B.25 on page 231).

During the process of transforming text units into semantically marked-up text units,
each text unit is represented by a corresponding intermediate text unit that comprises the
original text unit along with both intermediate (e.g., the text unit vector of the current
clustering iteration) and final (e.g., the identified concept) processing results.

Definition 18 (Intermediate Text Unit) An intermediate text unit ū := (ǔ: TextUnit, ü:
TokenizedTextUnit, ~u : TextUnitVector, i : Integer, j : Integer, o : Concept, Ē : SetOfInt-
NamedEntities) is a 7-tuple comprising the original text unit ǔ, the processed tokenized
text unit ü, the text unit vector ~u, the clustering iteration identifier i, the cluster identifier
j, the domain-specific concept o that domain experts typically associate with text unit ǔ,
and the set of intermediate named entities Ē identified in text unit ǔ.

For instance, let the tokenized text unit ü1: TokenizedTextUnit encapsulate the token
sequence 〈"contract", "sign"〉 obtained by pre-processing the original text unit ǔ1 :
TextUnit, which encapsulates the sentence "The contract was signed on Dec. 30,

2004." Additionally, assume that ~u1 : TextUnitVector represents the pre-processed text
unit ü1 in the vector-space model by means of the vector [0, 0, 0, 0.12, 0, 0, 0, 0.78, 0, 0]T .
Furthermore, the semantic concept conclusionOfContract ∈ O1 is encapsulated by o1 :
Concept and Ē1: SetOfIntNamedEntities includes intermediate named entities extracted
from text unit ǔ1. In this illustrative case, ū1 := (ǔ1, ü1, ~u1, 1, 5, o1, Ē1) is an intermediate
text unit whose text unit vector ~u1 is assigned to cluster 5 in the first iteration. The
notion of iterative clustering is discussed in detail in Subsection 4.3.4. One intermediate
text unit is encapsulated by the ADT IntTextUnit (see Appendix B.26 on page 232).

Finally, we extend our notions of text unit layers, text documents, and text archives by
defining their intermediate counterparts. The abstract data types IntTextUnitLayer (see
Appendix B.27 on page 233), IntTextDocument (see Appendix B.28 on page 234), and
IntTextArchive (see Appendix B.29 on page 234) encapsulate the respective objects.

Definition 19 (Intermediate Text Unit Layer) Given text unit layer ř: TextUnitLayer,
an intermediate text unit layer r̄ := 〈ū1, ū2, . . . , ū|̄r|〉 is a sequence of intermediate text
units such that ūi: IntTextUnit and ūi.textUnit() = ř.textUnit(i), i = 1, 2, . . . , ř.size().

Definition 20 (Intermediate Text Document) Given the text document ť : TextDocu-
ment, an intermediate text document t̄ := (ť: TextDocument, r̄: IntTextUnitLayer) is a 2-
tuple comprising the text document ť and the intermediate text unit layer r̄ that represents
a decomposition of text document ť into intermediate text units.
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Definition 21 (Intermediate Text Archive) Given the text archive ǎ: TextArchive, an
intermediate text archive ā := 〈t̄1, t̄2, . . . , t̄|ā|〉 is a sequence of not necessarily distinct
intermediate text documents such that t̄i : IntTextDocument and t̄i.textDocument() =
ǎ.textDocument(i), where i = 1, 2, . . . , ǎ.size().

4.2 Pre-Processing of Text Documents

Transforming text encoded as a character sequence into a numerical representation suit-
able for pattern discovery is the main objective of the pre-processing and transformation
steps of the generic KDT process introduced in Subsection 2.1.1. Because each spe-
cific knowledge discovery process requires an individual and goal-oriented approach to
pre-processing input textual data, the concrete pre-processing steps of the DIAsDEM
knowledge discovery process are described in this section. The pre-processing tasks that
are introduced in the following subsections (i) create and tokenize text, (ii) extract named
entities, (iii) lemmatize words and disambiguate their senses if necessary, (iv) establish a
controlled vocabulary, and finally (v) map pre-processed text units onto numerical text
unit vectors.

4.2.1 Creating and Tokenizing Text Units

As explained in Section 3.1, we focus on raw text stored in plain text files. Due to the
plethora of existing file conversion programs (e.g., the Linux tool ps2ascii), this restric-
tion has only minor practical consequences. Initially, raw text documents are decomposed
into tokenized text units of the required granularity level.

Text Unit Creation Since our framework aims at semantically marking up structural
text units, reliably identifying them in input text documents is of paramount impor-
tance. According to Definition 4 on page 58, text units are strings extracted from text
documents. They represent structural text components comprising more than one word.
Input documents are decomposed into text unit layers (cf. Definition 5 on page 59) in the
first pre-processing step such that each document is associated with exactly one text unit
layer. Each text unit layer is a sequence of ordered, not necessarily contiguous, structural
text units that originate from one document. Decomposed text documents are neither
deleted nor replaced by their respective text unit layers because original documents are
an integral part of semantically marked-up text documents.

Our concept of text unit layers is illustrated in Figure 4.1, which depicts three conceiv-
able decompositions of example text ťE3 into text units. Adopting the notion of text as
an ordered hierarchy of content objects (cf. DeRose et al., 1990, pp. 3–6), we assume that
news item ťE3 consists of six sentences, each of which is either assigned to the title (i.e.,
the first sentence “USA: Weyerhaeuser may sell subsidiary.”) or to one of two paragraphs.
Figure 4.1 illustrates the hierarchical structure of document ťE3 and indicates sentence
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USA: Weyerhaeuser may sell subsidiary. Timber giant Weyerhaeuser Company said Monda...    ...ck Exchange, the stock was up 25 cents to $46.87.

The company did no...   ...p 25 cents to $46.87.

Sentence 2 Sentence 3 Sentence 4 Sentence 5 Sentence 6

Paragraph 1Title

News Item

Paragraph 2

Sentence 1

Text Document:

Text Unit Layer 1:

Text Unit Layer 2:

Text Unit Layer 3:

Figure 4.1: Text Document ťE3 Decomposed into Three Distinct Text Unit Layers

Table 4.2: Text Document ťE1 Decomposed into Text Unit Layer řE1: TextUnitLayer :=
řE1.create(ťE1)

řE1 = 〈 〈"USA: VASCO says to sell consulting unit."〉, 〈"VASCO Corp said it agreed to

sell its consulting and technical organization, VASCO Performance System, to Wizdom

Systems Inc."〉, 〈"Terms were not disclosed."〉, 〈"-Chicago Newsdesk 312-408-8787"〉 〉

boundaries by dashed arrows. Text unit layer 1 represents all six sentences as individual
text units whereas the second text unit layer models paragraphs as text units. Finally,
text unit layer 3 represents the entire document as a single text unit.

Semantically marked-up text documents comprise exactly one marked-up text unit
layer. Therefore, domain experts have to determine the required level of text unit gran-
ularity in the pre-processing phase. When making this important decision, experts have
to consider the required natural clustering tendency of text units (cf. Section 3.2). In
addition, selecting the granularity of text units simultaneously determines the granularity
of semantic markup (cf. Section 1.2). In both case studies described in Chapter 6, for ex-
ample, we created fine-grained semantic markup at the sentence level because sentences of
the respective text documents clearly exhibited a natural clustering tendency. Depending
on the concrete application domain, however, structural text units may even correspond
to main and subordinate clauses, specific sections, or entire chapters. In general, a finer
text unit granularity entails more specific semantic tags and vice versa.

The complexity of identifying text unit boundaries in documents is influenced by the
application domain, the characteristics of input text documents (e.g., original file format),
and the granularity level chosen by the expert. Ideally, existing metadata about the logical
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document structure can be exploited to reliably identify chapters, headings, sections, and
paragraphs of input documents. If metadata that make explicit structural document
components are not available, a variety of specific algorithms for document structure
analysis (cf. Mao et al., 2003b) can be employed to infer the missing structural metadata.
Reviewing this specific thread of research, however, is beyond the scope of this work.

Instead of striving towards detecting arbitrary document structures, the prototype
DIAsDEM Workbench is highly focused on identifying sentences in text documents for
two reasons. On the one hand, sentences often convey important, self-contained facts that
are worth being semantically marked up. On the other hand, many algorithms for heuristic
sentence boundary detection are available and tend to work well in domain-specific texts
(Manning and Schütze, 1999, pp. 134–136). Based on supervised machine learning tech-
niques, Mikheev (1998), for instance, developed a domain-independent method to detect
sentence boundaries and achieved an accuracy rate of 99.25% in a large-scale evaluation.
The heuristics applied by DIAsDEM Workbench to identify sentence boundaries are
outlined in Subsection 5.2.1.

In principle, any method for identifying text units can be utilized in the pre-processing
step of our framework. Hence, the abstract data type TextUnitLayer merely defines the
constructor create(ťinit: TextDocument) that constructs a new text unit layer by decom-
posing the input text document ťinit into i ∈ N ordered, non-overlapping, structural text
units 〈ǔ1, ǔ2, . . . , ǔi〉 of the required granularity level (see Appendix B.7 on page 222). For
illustrative purposes, Table 4.2 depicts the result of decomposing example text document
ťE1 into the sentence-based text unit layer řE1: TextUnitLayer := řE1.create(ťE1).

Tokenization Text units (i.e., character sequences) are divided into units called tokens in
the second pre-processing step, referred to as tokenization. Each token “is either a word
or something else like a number or a punctuation mark” (Manning and Schütze, 1999,
p. 124). According to Fox (1992, p. 102), “tokens are groups of characters with collective
significance.” In Definition 14 on page 72, we have analogously defined tokens as sequences
of contiguous characters that represent one natural language word, one punctuation mark,
one numeral, or any other atomic and semantic-carrying character sequence. Baeza-Yates
and Ribeiro-Neto (1999, pp. 165–167) preferred the term lexical analysis to denote the
process of converting a stream of characters into a stream of words. Taking the information
retrieval perspective, lexical analysis and tokenization, respectively, is the first stage in
both automatic indexing and query processing. In our KDT process, splitting text units
into tokens is a fundamental pre-processing technique.

Intuitively, identifying tokens seems to be as easy as splitting a character sequence at
the occurrences of one or many contiguous whitespace characters that usually separate
natural language words from each other. Of course, the occurrence of whitespace serves as
the main clue for tokenizing English or German texts. Nevertheless, tokenization involves
several lexical issues that must be carefully considered. Tokens do not solely consist
of letters, and tokens are not always surrounded by whitespace characters. Under the
felicitous heading “Tokenization: What is a word?”, Manning and Schütze (1999, pp. 124–
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131) discussed several problems that typically arise during tokenization:

• Punctuation marks: The substrings "disclosed. VASCO" and "organization,

VASCO" of text ťE1 illustrate that punctuation marks, due to layout conventions,
are often directly attached to words. During tokenization, words are separated from
attached punctuation marks, like 〈"disclosed", ".", "VASCO"〉. Periods, commas,
and semicolons, however, are often parts of tokens and do not serve as punctuation
marks. Periods may mark the end of sentences or indicate abbreviations. In the lat-
ter case, periods are inseparable parts of tokens (e.g., "Inc." in text ťE1 or "Aug."
in text ťE3). Furthermore, punctuation marks are often integral parts of tokens that
represent numerals (e.g., "1,000.5") or date expressions (e.g., "30.12.2006").

• Hyphenation: Character sequences containing a hyphen, like "Texas-based" in
text ťE2, require careful attention. One difficulty involves detecting and removing
line-breaking hyphens that are inserted to typographically improve the justification
of text. As the string "1,500-employee" in ťE3 illustrates, hyphens at the end
of lines cannot always be removed. Other hyphenated character sequences include
words like "so-called", which are typically regarded as one token, and words like
"Texas-based", which are mostly split into several tokens. Inconsistent spelling
(e.g., "cooperate" vs. "co-operate") within one archive adds complexity as well.

• Whitespace not indicating a word break: Unlike the above mentioned issues of not
splitting certain character sequences, the opposite problem of regarding a character
sequence comprising whitespace as one token arises as well. For instance, multi-
part words like "Stock Exchange" in text ťE3, well-known proper nouns, such as
"New York" in text ťE5, or other semantic-carrying character sequences, like phone
numbers, are typically considered as single tokens. However, named entities (e.g., the
company "VASCO Corp" in text ťE1) are not identified during tokenization. Tokens
that include whitespace are henceforth referred to as multi-part tokens.

In the context of automatic indexing, Fox (1992, p. 103) emphasized the importance of
deciding what counts as a token in the respective indexing scheme. The author proposed
entirely removing character sub-sequences comprising, for instance, digits and punctuation
marks if they “do not make good index terms.” Since the exact case of letters is usually
irrelevant for retrieving information, Fox also advocated converting all characters into
either upper or lower case unless case distinction is indeed necessary. In contrast, the
tokenization step within our knowledge discovery process neither removes non-whitespace
characters nor converts the case of characters for one reason: Named entity extraction
described in the next subsection analyses and takes advantage of existing digits, special
characters (e.g., "$", "/", and "+"), and the case of letters. In particular, upper-case
characters facilitate the automated recognition of named entities in English texts (e.g.,
"Philip Knisely" and "Constellation Capital" in text ťE5).

Baeza-Yates and Ribeiro-Neto (1999, p. 167) pointed out that all lexical analysis oper-
ations can be implemented without difficulty. However, “careful thought should be given
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Table 4.3: Tokenized Text Units after Tokenizing the Elements of Text Unit Layer řE1

üE1,1: TokenizedTextUnit = 〈"USA", ":", "VASCO", "says", "to", "sell", "consulting",
"unit", "."〉

üE1,2: TokenizedTextUnit = 〈"VASCO", "Corp", "said", "it", "agreed", "to", "sell", "its",
"consulting", "and", "technical", "organization", ",", "VASCO", "Performance", "System",
",", "to", "Wizdom", "Systems", "Inc."〉

üE1,3: TokenizedTextUnit = 〈"Terms", "were", "not", "disclosed", "."〉

üE1,4: TokenizedTextUnit = 〈"-", "Chicago", "Newsdesk", "312", "-", "408", "-", "8787"〉

Algorithm 4.1 DecomposeAndTokenizeTextDocuments
Input: (ǎ: TextArchive)
Output: (ā: IntTextArchive)
1: ā: IntTextArchive := ā.create() // initialize output int. text archive
2: for all i: Integer := 1, 2, . . . , ǎ.size() do // iterate through text documents
3: ř: TextUnitLayer := ř.create( ǎ.textDocument(i) ) // decompose text document
4: r̄: IntTextUnitLayer := r̄.create() // initialize int. text unit layer
5: for all j: Integer := 1, 2, . . . , ř.size() do // iterate through text units
6: ǔ: TextUnit := ř.textUnit(j) // extract jth text unit
7: ü: TokenizedTextUnit := ü.create(ǔ) // tokenize jth text unit
8: ū: IntTextUnit := ū.create(ǔ, ü,null,null,null,null,null) // create int. text unit
9: r̄.appendIntTextUnit(ū) // append int. text unit

10: end for
11: t̄: IntTextDocument := t̄.create(ǎ.textDocument(i), r̄) // create int. text document
12: ā.appendIntTextDocument(t̄) // append int. text document
13: end for

to each one of them” since lexical analysis operations may have a profound impact. For
example, Fox (1992) presented dedicated algorithms and data structures for lexical anal-
ysis based on finite state machines. In our framework, the ADT TokenizedTextUnits
therefore provides the constructor create(ǔinit : TextUnit) that takes a text unit ǔinit as
input and divides it into a sequence of tokens (see Appendix B.22 on page 229). The
prototypical implementation of this tokenization algorithm within DIAsDEM Work-
bench is outlined in Subsection 5.2.1. To illustrate our notion of tokenization, Table 4.3
depicts four tokenized text units created by tokenizing the elements of text unit layer
řE1: TextUnitLayer.

Effect on KDT Process Flow Algorithm 4.1 (DecomposeAndTokenizeTextDocuments)
encapsulates the initial pre-processing tasks of decomposing text documents and tok-
enizing the resulting text units. Additionally, this algorithm transforms the input text
archive into an intermediate text archive required by subsequent document pre-processing
tasks. Consequently, Algorithm 4.1 is the first algorithm of the KDT process flow to be
parameterized during the interactive knowledge discovery.
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Table 4.4: Excerpt from the Extended Named Entity Hierarchy (Source: Sekine et al.,
2002) and Exemplary Named Entities

Named Entity Type Exemplary Named Entities

(top)
name

person "Philip Knisely"

organization
company "VASCO", "VASCO Corp", "Wizdom Systems Inc.", "Helmerich"
market "New York Stock Exchange"

location "USA", "Chicago", "Baytown, Texas", "Woodland Hills, Calif."

product "modular classrooms"

time top
timex "Monday", "end of November"

date "August 30", "Aug. 31", "October 21"

periodx "8 months"

numex "1,500-employee"

money "$48 million", "$2.1 billion", "25 cents", "$46.87"

4.2.2 Extracting Named Entities

Following text decomposition and tokenization, recognizing domain-specific named en-
tities is the second main pre-processing step. Informally introduced in Section 1.2 and
defined in Section 3.1, named entities are instantiations (e.g., "Wizdom Systems Inc.")
of named entity types (e.g., company). More precisely, named entity types are abstract
classes and generic numerical expressions whereas named entities are 2-tuples comprising
the respective named entity type and a character sequence that represents a canonical
form of the instantiated named entity type (cf. Definition 7 on page 59). Given the set
PE1 := {person, company, location, money} of domain-specific named entity types, the
excerpt "System, to Wizdom Systems Inc. Terms were" from text document ťE1, for
example, contains the named entity eE1,4 := (company, "Wizdom Systems Inc.").

Named entity extraction is highly domain-dependent due to the variety of existing and
possibly interesting named entities. Sekine et al. (2002), for instance, compiled a hier-
archy of approx. 150 named entity types. Table 4.4 depicts a small excerpt from this
hierarchy and exemplifies named entity types through named entities occurring in texts
ťE1 through ťE5. Besides time expressions (i.e., timeex), period expressions (i.e., peri-
odx), and numerical expressions (i.e., numex), these five texts primarily contain various
names of companies and locations. The latter named entity type is in fact the parent
concept of more specific locations, such as city, country, or postal address. In addi-
tion to 150 named entity types listed in the named entity hierarchy proposed by Sekine
et al., tagging documents from a narrow or exceptional domain might necessitate the
instantiation of domain-specific named entity types, such as pharmaceutical substance,
international security identification number, or statutory source.
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Initially, domain experts thus have to carefully select relevant and domain-specific
named entity types. Since extracted named entities ultimately serve as attributes of se-
mantic XML tags, significant importance must be attached to instantiations of elements
in the set of relevant named entity types. Furthermore, named entities to be identified
should occur sufficiently frequently in the input text archive to justify their extraction.
Being able to reliably identify certain named entities is by no means a reason to actually
extract them. Extracting phone numbers from the five example texts, which only occur in
the context of the publishing newsroom, adds no value if these news items are semantically
annotated on behalf of Reuters itself. In contrast, identifying, for instance, names of cities
in news items is an important prerequisite to distinguish between different branch offices
of the same company based on their locations. Undoubtedly, instances of fundamentally
important named entity types within one application domain may constitute meaningless
tokens in another domain.

As the literature review in Subsection 2.1.3 has revealed, recognizing names of persons,
companies, and locations in general English news items“was more or less a solved problem”
in 1998 (Jackson and Moulinier, 2002, p. 77). In addition, both freely available (e.g., cf.
Cunningham, 2002) and commercial (e.g., cf. Hammond et al., 2002; Ferrucci and Lally,
2004) tools nowadays allow for the extraction of domain-independent and domain-specific
named entities. Due to the inherent domain dependency of named entity extraction, we
refrain from presenting a specific algorithm. Instead, we subsequently make use of the
operation identifyNamedEntities(P : SetOfNamedEntityTypes) defined by the abstract
data type IntTextUnit (see Appendix B.26 on page 232). This operation takes a set
of domain-specific named entity types as input and identifies their instantiations in the
tokenized text unit associated with the respective intermediate text unit. By utilizing
an abstract algorithm for named entity recognition, we again emphasize the necessity of
domain experts to supply detailed descriptions of named entity types as an important
input to our knowledge discovery process (cf. Figure 3.2 on page 65). These descriptions
must be sufficiently precise to enable the re-use of adequate algorithms or to allow for the
implementation of new, dedicated named entity extractors.

In our framework, neither the canonical forms of identified named entities (e.g., "2006-
12-30") nor the respective tokens themselves, such as 〈"Dec.", "30", ",", "2006"〉,
constitute features in the pattern discovery step because they convey too fine-grained
metadata. Unlike values of named entities, however, the mere fact that instances of certain
named entity types occur in a text unit is indeed an auspicious feature. To find groups of
semantically similar text units, measuring the frequency of occurrence of selected named
entity types tends to provide more abstract insights into the semantic document structure
than treating each named entity as an individual feature. As tokens that correspond to
identified named entities are thus useless, we advocate replacing them with specific tokens,
so-called named entity placeholders that are defined as follows:

Definition 22 (Named Entity Placeholder) Given the intermediate named entity ē: Int-
NamedEntity identified in tokenized text unit ü : TokenizedTextUnit, a named entity
placeholder is a token that uniquely identifies ē within the scope of its intermediate text
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Table 4.5: Processed Text Units of Intermediate Text Unit Layer r̄E1 (cf. Table 4.3 on
Page 79) after Extracting Named Entities

üE1,1 = 〈"USA", ":", ēE1,1.placeholder(), "says", "to", "sell", "consulting", "unit", "."〉

üE1,2 = 〈ēE1,2.placeholder(), "said", "it", "agreed", "to", "sell", "its", "consulting",
"and", "technical", "organization", ",", ēE1,3.placeholder(), ",", "to", ēE1,4.placeholder()〉

üE1,3 = 〈"Terms", "were", "not", "disclosed", "."〉

üE1,4 = 〈"-", ēE1,5.placeholder(), "Newsdesk", "312", "-", "408", "-", "8787"〉

document. A named entity placeholder substitutes all tokens that instantiate intermediate
named entity ē in tokenized text unit ü.

For any intermediate named entity, the specific placeholder token is created by exe-
cuting the operation placeholder(): Token, which is provided by the abstract data type
IntNamedEntity (see Appendix B.23 on page 230). Subsequent to named entity identi-
fication, all tokens that correspond to named entities are replaced by their respective
placeholders. Thereby, we considerably reduce the dimensionality of textual data in
terms of the number of distinct tokens occurring in a text archive. To that end, the
abstract data type IntTextUnit (see Appendix B.26 on page 232) defines an operation
replaceNamedEntities(). This operation can be implemented straightforwardly since it
only replaces all tokens that instantiate an intermediate named entity identified in the
respective tokenized text unit with appropriate named entity placeholders.

To illustrate our notion of named entity extraction, Table 4.5 depicts the processed,
tokenized text units üE1,1 : TokenizedTextUnit through üE1,4 : TokenizedTextUnit, which
are contained in the intermediate text unit layer r̄E1: IntTextUnitLayer (cf. Table 4.3 on
page 79), after both identification and replacement of named entities. Furthermore, the
identified intermediate named entities along with their placeholders are listed in Table 4.6.
For example, the tokenized text unit üE1,2 contains placeholders for three named entities.
More specifically, the expression ēE1,2.placeholder() stands for the intermediate named
entity "VASCO Corp" of type company that corresponds to tokens 1 and 2 of its parent
tokenized text unit üE1,2 = r̄E1.processedTextUnit(2).

Effect on KDT Process Flow Algorithm 4.2 (ExtractNamedEntities) performs the pre-
processing tasks of identifying named entities in tokenized text units and replacing them
with named entity placeholders. As input, this algorithm takes a set of domain-specific
named entity types and an intermediate text archive. Subsequent to their extraction
from text units, named entities are stored in the set of intermediate named entities of the
respective intermediate text units. Following DecomposeAndTokenizeTextDocuments,
ExtractNamedEntities is the second algorithm in the KDT process flow that has to be
parameterized during the knowledge discovery process. Named entity identification is
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Table 4.6: Intermediate Named Entities Identified in Tokenized Text Units of Intermedi-
ate Text Unit Layer r̄E1 (cf. Table 4.3 on Page 79)

Intermediate Named Entity
Named Entity Placeholder

ēE1,1: IntNamedEntity = (company, "VASCO", 1, 3, 3) ēE1,1.placeholder()
ēE1,2: IntNamedEntity = (company, "VASCO Corp", 2, 1, 2) ēE1,2.placeholder()
ēE1,3: IntNamedEntity = (company, "VASCO Performance System", 3, 13, 15) ēE1,3.placeholder()
ēE1,4: IntNamedEntity = (company, "Wizdom Systems Inc.", 4, 18, 20) ēE1,4.placeholder()
ēE1,5: IntNamedEntity = (place, "Chicago", 5, 2, 2) ēE1,5.placeholder()

Algorithm 4.2 ExtractNamedEntities
Input: (ā: IntTextArchive,P: SetOfNamedEntityTypes)
Output: (ā: IntTextArchive)
1: for all i: Integer := 1, 2, . . . , ā.size() do // iterate through int. text documents
2: for all j: Integer := 1, 2, . . . , ā.intTextUnitLayerSize(i) do // iterate through int. text units
3: ā.intTextUnit(i, j).identifyNamedEntities(P) // identifiy named entities
4: ā.intTextUnit(i, j).replaceNamedEntities() // replace named entities with placeholders
5: end for
6: end for

deliberately executed before lemmatization, which is described in the next subsection,
because replacing words with their grammatical root forms may trigger negative side
effects on named entity extraction.

4.2.3 Lemmatizing Words and Word Sense Disambiguation

According to the pre-processing phases outlined in Subsection 2.1.2, lexical analysis, or
tokenization, is followed by the removal of meaningless, though frequently occurring, stop-
words (Baeza-Yates and Ribeiro-Neto, 1999, p. 167). In an IR context, stopwords are
removed because they have a very low discriminatory power for retrieval purposes. Be-
sides, their elimination reduces the index size considerably. In our framework, removing
stopwords is not compulsory since we do not build a persistent document index. The
straightforward (cf. Fox, 1992) procedure of stopword removal is optional and hence de-
liberately omitted from discussion in this section on text pre-processing. Having tokenized
text units and extracted named entities, the third main document pre-processing step in
our KDT process is lemmatization and the optional word sense disambiguation.

Lemmatization Due to the more or less complex syntax rules of natural languages, text
documents mostly contain many different word variants. The singular and plural noun
forms (e.g., "acquisition" in text document ťE2 and "acquisitions" in text ťE5) or
conjugated verb forms (e.g., "sells" and "sell" in text ťE5) are examples of syntactical
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word variations that do not regularly affect the word meaning. During document pre-
processing, these word variants are automatically mapped onto their grammatical root
forms (e.g., "acquisition" and "sell"). Thereby, the lemmatization step facilitates the
use of a controlled vocabulary. The benefits of lemmatization become apparent when
processing text documents composed of a highly inflective language, like German.

Lemmatization is the activity of determining lemma forms of natural language words.
The term lemma denotes a lexical entry that represents all inflected forms of one word in
a dictionary (cf. Bowker and Pearson, 2002, pp. 166–167). For example, the infinitive is
used as the lemma of conjugated verbs whereas nouns are typically represented by their
singular forms (Saeed, 2003, p. 56). To that end, lemmatization algorithms utilize the
part of speech information (e.g., noun vs. verb) of inflected word forms. Unlike the notion
of lemma forms, the term stem denotes the portion of a word that is left after removing its
affixes, such as prefixes and suffixes (Baeza-Yates and Ribeiro-Neto, 1999, pp. 168–169).
Stems do not necessarily correspond to lexical entries. For instance, the token "connect"

is the stem of the inflected verb forms "connected" and "connecting", as well as the
noun forms "connection" and "connections". This example illustrates that stemming
does not utilize the part-of-speech information of words to be stemmed.

We advocate employing a sophisticated lemmatization algorithm instead of simply stem-
ming words because lemma forms convey more semantic information than word stems.
Manning and Schütze (1999, p. 132), for instance, noticed that stemming “often costs
you a lot of information.” Since canonical dictionary entries depend on the part-of-speech
information of words, their meaning can be more easily recognized by domain experts
while establishing a domain-specific controlled vocabulary (cf. next subsection). Unlike
stems, lexical units can be looked up directly in a conventional dictionary or in a lexical
database (e.g., WordNet; cf. Fellbaum, 1998). In addition, content-descriptive labels
for qualitatively acceptable text unit clusters are automatically suggested on the basis of
frequently occurring features and text unit descriptors, respectively (cf. Subsection 4.4.1).
Again, the semantic expressiveness of word stems, such as "comput", is rather limited
when compared with lemma forms (e.g., "computer", "computational", "compute", or
"precompute"). Especially for less inflective languages like English, however, the coarser
results of stemming words can be considered an approximation of lemmatizing them.

Frakes (1992) surveyed four different approaches to stemming English words. According
to Baeza-Yates and Ribeiro-Neto (1999, pp. 168–169), the seminal suffix removal algorithm
proposed by Porter (1980a) is the most popular one due to its simplicity. This algorithm
stems English words by applying a series of rules for suffix stripping. In the challenging
domain of automated lemmatization, Schmid (1994, 1999), for example, introduced a
language-independent, fast, high-quality part-of-speech tagger based on the supervised
learning paradigm. Besides determining the parts of speech, TreeTagger outputs the
lemma form of words as well. The system achieved an accuracy of between 96.05% and
97.53% in experiments with a German newspaper corpus.

Consequently, we do not suggest one specific lemmatization algorithm, but utilize the
abstract operation lemmatizeWords() defined by the abstract data type IntTextUnit (see
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Appendix B.26 on page 232). When executed on a specific intermediate text unit, this
operation modifies the processed, tokenized text unit contained in the intermediate text
unit. Concretely, lemmatizeWords() replaces all tokens that are natural language words
in the tokenized text unit with their grammatical root forms.

Word Sense Disambiguation Natural language expressions can be highly ambiguous.
In particular, lexical ambiguity arises when one word has many senses and meanings.
Homonyms are unrelated senses of the same phonological word. Homonyms can be further
subdivided into homographs, namely, unrelated senses of the same written word, and
homophones that are unrelated senses of the same spoken word (Saeed, 2003, pp. 63–
64). In contrast to homonyms, polysemes are different, yet somehow related, senses of
one phonological word. Since our framework is not rooted in the discipline of lexicology,
we differentiate neither between homonymy and polysemy nor between the two forms
of homonymy although only homographs are relevant to our framework. Henceforth,
multiple senses of the same written word are thus referred to as homonyms.

Word sense disambiguation is the activity of assigning words in a text to their appro-
priate senses listed in a lexicon (cf. Leacock and Chodorow, 1998, p. 265). This task
determines the sense of an ambiguous word, which is invoked in a concrete use of this
word (Manning and Schütze, 1999, p. 229). For example, the lemmatized token "term"

occurring in the text unit "Terms were not disclosed." is highly ambiguous unless
the context in which it appears is taken into consideration. The English lexical database
WordNet (cf. Fellbaum, 1998), for example, lists seven different senses, or homonyms,
for the noun "term". In the third text unit of news item ťE1, this noun is used in the
sense ‘statement of what is required as part of an agreement’.

Manning and Schütze (1999, p. 132) emphasized that lemmatization implies disam-
biguation because the token "lying" may, for example, represent either the lexical entry
‘making a statement one knows to be untrue’ or ‘having one’s body in a flat position.’ In
the pre-processing step of our framework, nevertheless, we separate the mandatory lemma-
tization step, which converts words into their lemma forms, from the optional word sense
disambiguation step, which maps ambiguous lemmas onto their appropriate senses, for
three reasons. Firstly, existing lemmatization systems (e.g., TreeTagger, cf. Schmid,
1999) do not necessarily disambiguate word senses as a byproduct. Secondly, word sense
disambiguation may not be necessary for text documents originating from a very narrow
or exceptional domain and which are thus less ambiguous. Since automated word sense
disambiguation is error-prone as well, its application may thirdly be restricted to a few
important words (e.g., "interest" in business news items) that are both frequently used
and associated with multiple domain-specific senses.

A large number of algorithms for automated word sense disambiguation are available
(e.g., Leacock and Chodorow, 1998; Manning and Schütze, 1999, p. 235–256). Therefore,
our framework only exploits the operation disambiguateWordSenses provided by the ADT
IntTextUnit (see Appendix B.26 on page 232). This abstract operation modifies the
tokenized text unit associated with an intermediate text unit by appending a sense tag,
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Algorithm 4.3 LemmatizeAndDisambiguateWords
Input: (ā: IntTextArchive)
Output: (ā: IntTextArchive)
1: for all i: Integer := 1, 2, . . . , ā.size() do // iterate through int. text documents
2: for all j: Integer := 1, 2, . . . , ā.intTextUnitLayerSize(i) do // iterate through int. text units
3: ā.intTextUnit(i, j).lemmatizeWords() // lemmatize natural language words
4: ā.intTextUnit(i, j).disambiguateWordSenses() // disambiguate word senses
5: end for
6: end for

Table 4.7: Processed Text Units of Intermediate Text Unit Layer r̄E1 (cf. Table 4.3 on
Page 79) after Lemmatization and Word Sense Disambiguation

üE1,1 = 〈"USA", ":", ēE1,1.placeholder(), "say", "to", "sell", "consulting", "unit", "."〉

üE1,2 = 〈ēE1,2.placeholder(), "say", "it", "agree", "to", "sell", "its", "consulting", "and",
"technical", "organization", ",", ēE1,3.placeholder(), ",", "to", ēE1,4.placeholder()〉

üE1,3 = 〈"term/s:agreement", "be", "not", "disclose", "."〉

üE1,4 = 〈"-", ēE1,5.placeholder(), "Newsdesk", "312", "-", "408", "-", "8787"〉

which indicates the concrete word sense, to all tokens that are homonymous natural
language words. Ultimately, the extent of sense disambiguation depends on linguistic
characteristics and the semantic diversity of the domain.

Effect on KDT Process Flow Given an intermediate text archive, Algorithm 4.3 (Lem-
matizeAndDisambiguateWords) lemmatizes and disambiguates word senses in intermedi-
ate text units. Following DecomposeAndTokenizeTextDocuments and ExtractNamedEn-
tities, LemmatizeAndDisambiguateWords is the third algorithm to be executed in the
pre-processing phase of our interactive knowledge discovery process. The implementation
of these two pre-processing tasks in DIAsDEM Workbench is outlined in Subsec-
tion 5.2.1.

Table 4.7 illustrates the effect of applying the algorithm LemmatizeAndDisambiguate-
Words to the processed text units of intermediate text unit layer r̄E1. For example, the
inflected word forms "says" and "said" are replaced with their infinitive "say". The
capitalized plural noun "Terms" is substituted by its canonical form "term". In addition,
the appropriate sense tag "/s:agreement" is appended to the lemmatized token "term",
which results in the lemmatized and disambiguated token "term/s:agreement".

4.2.4 Establishing a Controlled Vocabulary

As explained in Subsection 2.1.2, selecting index terms and constructing a term catego-
rization structure (e.g., thesaurus) are the fourth and fifth, respectively, text operation
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of document pre-processing in information retrieval. In the pre-processing phase of our
knowledge discovery process, these highly interdependent steps are combined into the
semi-automated task of establishing a domain-specific controlled vocabulary. The result
provides the basis for transforming pre-processed text units into a numerical representa-
tion suitable for pattern discovery, as discussed in Subsection 4.2.5. In this subsection,
we first introduce our approach to feature1 selection and explain the rationale behind it.
Secondly, we define our notion of a controlled vocabulary and related terminology for the
scope of this work. Thirdly, the usage of domain-specific thesauri as controlled vocabu-
laries is discussed. Finally, we outline supportive techniques that facilitate the laborious,
but nonetheless crucial, task of establishing a controlled vocabulary.

Feature Selection After intensive pre-processing, text units are mapped onto numerical
text unit vectors that in turn constitute the structured input data to a conventional
clustering algorithm in the pattern discovery step. However, what numerical features shall
represent pre-processed, though nevertheless unstructured, text units? This fundamental
question is addressed by feature selection2 as part of the transformation step in the generic
KDT process, which is depicted in Figure 2.1 on page 22.

The higher the dimensionality (i.e., the number of features) of a fixed-size input data
set, the worse the performance of many knowledge discovery algorithms tends to be in
terms of result quality and required resources (e.g., cf. Hand et al., 2001, pp. 193–196).
This phenomenon is well known as the curse of dimensionality, “a malediction that has
plagued the scientist from earliest days” (Bellman, 1961, p. 94). In particular, the per-
formance of clustering algorithms (Aggarwal and Yu, 2000, pp. 70–71) and classification
algorithms (Sebastiani, 1999, p. 6) tends to decline drastically as the dimensionality of
the input data increases. According to Hand et al. (2001, p. 194), feature selection is a
fairly general, but nevertheless sensible, strategy when analyzing high-dimensional data.
Selecting appropriate features refers to choosing a subset of the original variables by elim-
inating redundant and uninformative ones (Kim et al., 2000, p. 365). Feature selection
may also involve constructing new features from the original ones (Guyon and Elisseeff,
2003, p. 84). Clearly, finding useful features ultimately depends on the objectives of the
knowledge discovery task at hand (Fayyad et al., 1996b, p. 10). Since clusters of seman-
tically similar text units shall be identified in the pattern discovery phase of our KDT
process, features of text units must properly reflect their content.

Feature selection techniques are broadly divided into supervised methods for classifica-
tion tasks and unsupervised algorithms for clustering tasks (cf. Yang and Pedersen, 1997;
Guyon and Elisseeff, 2003). In pursuing our knowledge discovery objectives, we focus on
the latter techniques since unsupervised learning techniques (i.e., clustering algorithms)
are employed in our pattern discovery phase. Unlike training data sets prepared for text
classification tasks, text units in training archives are not assigned to a priori known

1The terms variable, attribute, and measurement are synonyms of the term feature in this work.
2Variable selection and dimensionality reduction are synonyms of feature selection in this work.
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semantic concepts because our framework aims at inferring them. In principle, three
unsupervised approaches to selecting features of text units can be distinguished:

1. Choosing all available features without performing any selection constitutes the
naive approach. Unless the number of remaining distinct terms after pre-processing
the input archive is relatively small, their meanings are reliably disambiguated, and
synonymous terms do not occur, this simplistic approach is disadvantageous due to
the effects related to the curse of dimensionality. In contrast to dimension-sensitive
KDT applications, however, full text indexing is commonly employed by Web-scale
information retrieval systems (cf. Baeza-Yates and Ribeiro-Neto, 1999, p. 171).

2. Manual, semi-automated, or automated feature selection involves identifying a lim-
ited number of semantic-carrying content descriptors (cf. Subsection 2.1.2) that are
capable of representing the topicality, or the subject, of documents. Research in
information retrieval has produced a variety of techniques to select appropriate con-
tent identifiers and index terms, respectively (cf. Baeza-Yates and Ribeiro-Neto,
1999, pp. 169–170). For example, representative methods for topic identification in
text have been reviewed in Subsection 2.2.1. Once content descriptors are manually,
or at best automatically, chosen (e.g., cf. Moens, 2000, pp. 77–102), they form a
reduced feature space and correspond to a domain-specific controlled vocabulary or,
synonymously, an indexing language. Each text unit is henceforth represented by
the text descriptors that occur therein (cf. Korfhage, 1997, pp. 105–110).

3. Automated feature creation methods map text unit vectors from a high-dimensional
input feature space onto a significantly lower-dimensional feature space. These tech-
niques compute novel numerical variables that make hidden semantic relationships
between different terms as explicit as possible. For example, latent semantic index-
ing exploits term co-occurrences within documents and drastically reduces the fea-
ture space by computing the singular value decomposition of the term-by-document
matrix (Deerwester et al., 1990; Manning and Schütze, 1999, pp. 554–564). Other
techniques, such as concept decomposition (Dhillon and Modha, 2001) and con-
cept indexing (Karypis and Han, 2000b), employ clustering algorithms to first iden-
tify k document clusters and subsequently use their centroid vectors to form a k-
dimensional feature space onto which document vectors are finally mapped.

The DIAsDEM framework adopts the second approach to feature selection. We favor
establishing a domain-specific controlled vocabulary over the alternatives for three reasons.
Firstly, text units have to be represented such that their semantic content is retained as
much as possible (cf. Hand et al., 2001, p. 457). Since computational problems of clustering
algorithms induced by a high-dimensional feature space must be avoided simultaneously,
treating each distinct term as an individual feature is ruled out. The remaining two reasons
in favor of creating a controlled vocabulary are related to the objective of our framework,
namely, deriving content-descriptive, human-readable cluster labels and names of semantic
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XML tags, respectively. Secondly, we consequently refrain from utilizing methods that
compute new numerical features because techniques like latent semantic indexing make
the interpretation of clustering results more difficult (Liu et al., 2003, p. 488). Guyon and
Elisseeff (2003, p. 1159) emphasized the importance of utilizing domain knowledge during
feature selection. Assuming the existence of domain knowledge (e.g., common synonyms
of terms) on the part of the human expert, a controlled vocabulary thirdly allows for its
seamless integration into the KDT process.

Undoubtedly, creating and maintaining a domain-specific controlled vocabulary requires
costly human efforts. Even methods for the automatic establishment of controlled vocab-
ularies have to be supervised to ensure a high quality of the resulting term collections.
Nevertheless, we strongly advocate constructing a dedicated controlled vocabulary dur-
ing feature selection as it forms an important basis for generating high-quality semantic
markup. We briefly survey techniques that support domain experts in selecting appropri-
ate content identifiers after introducing additional, framework-specific terminology and
discussing the use of thesauri as specific controlled vocabularies.

Terminology Korfhage (1997, p. 317) defined the term controlled vocabulary as a “re-
stricted set of words and phrases that are used to describe documents” in a given text
archive. Colomb (2002, p. 87) characterized a controlled vocabulary as an information
structure that is a “collection of terms from which descriptors are drawn.” This set of
text descriptors3 is used to concisely represent or summarize the content of associated
full text documents (Colomb, 2002, p. 31). Prior to clarifying our terminology related to
controlled vocabularies, the auxiliary notion of atomic concepts shall be introduced:

Definition 23 (Atomic Concept) An atomic concept is one unit of thought whose se-
mantic content can be re-expressed by a combination of other and different concepts.

The above definition is deliberately analogous to the standardized notion of concepts
in the context of subject indexing (cf. ISO 5963, 1985, p. 1). In our framework, however,
atomic concepts are intentionally distinguished from concepts (cf. Definition 6 on page 59).
The latter, higher-level notion of concepts denotes a thought that domain experts typically
associate with a group of semantically similar text units, such as sentences or paragraphs.
Unlike atomic concepts (e.g., Acquisition or Announcement), concepts concisely sum-
marize text units. More specifically, concepts are mostly combinations of several atomic
concepts (e.g., AcquisitionAnnouncement). Our framework-specific distinction between
atomic concepts and higher-level, typically composite concepts is inspired by the theory of
conceptual atomism, as discussed by Laurence and Margolis (1999, pp. 59–71). This cog-
nitive science theory stipulates that lexical concepts, which we refer to as atomic concepts,
are primitive and have no structure. Relevant atomic concepts are either represented by
text unit descriptors or text unit non-descriptors.

3The terms content identifier, keyword, and index term are considered as synonyms of text descriptor.
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Definition 24 (Text Unit Descriptor) A text unit descriptor is a token that is consis-
tently used to represent one atomic concept when characterizing the content of text units.

Our notion of text unit descriptors4 intentionally resembles the standardized defini-
tion of a preferred term in the context of indexing documents (cf. ISO 5963, 1985, p. 1).
For example, text unit descriptors denote natural language words (e.g., the tokens "an-

nouncement" and "acquisition") or named entity types (e.g., company). The latter are
obtained via named entity placeholders that occur in pre-processed text units. Eventu-
ally, domain-specific descriptors correspond to the dimensions of the reduced feature space
required to map pre-processed text units onto vectors of moderate dimensionality.

Text unit non-descriptors are a second category of tokens that are not directly a part of
the feature space. Nonetheless, they convey important semantic information as each text
unit non-descriptor represents an atomic concept that is equal or otherwise semantically
related to an atomic concept represented by a text unit descriptor.

Definition 25 (Text Unit Non-Descriptor) A text unit non-descriptor is a token that
(i) represents one atomic concept and (ii) directly or indirectly references one associated
text unit descriptor. The atomic concept represented by a text unit non-descriptor is equal
or otherwise semantically related to the atomic concept of its associated text unit descrip-
tor. When characterizing the content of text units, the associated text unit descriptor is
consistently used to represent the atomic concept of a text unit non-descriptor.

The above definition of text unit non-descriptors5 is broader than the standardized
notion of a non-preferred term in the context of subject indexing (cf. ISO 5963, 1985,
p. 1). A non-descriptor and its associated descriptor are synonyms if they denote the
same atomic concept with different tokens. Unlike non-preferred terms defined by ISO
5963 (1985), the relationship between atomic concepts of a non-descriptor and its as-
sociated descriptor can also be one of hyponymy (i.e., relation of inclusion; cf. Saeed,
2003, pp. 68–70), meronymy (i.e., part–whole relationship; cf. Saeed, 2003, pp. 70–71),
or any other conceivable kind. For example, the disambiguated and sense-tagged token
"statement/s:announcement" is a non-descriptor associated with the synonymous text
unit descriptor "announcement". Furthermore, the exemplary non-descriptor "takeover"
references a broader term, namely, the descriptor "acquisition". Thus, the content of
text units comprising the tokens "statement/s:announcement" and "takeover" is char-
acterized by the descriptors "announcement" and "acquisition".

Having introduced text unit descriptors and non-descriptors, we proceed by defining
our notion of controlled vocabulary terms and our notion of controlled vocabularies.

Definition 26 (Controlled Vocabulary Term) The 4-tuple v := (w̌: Token, i: Integer, d:
Boolean, j : Integer) is a controlled vocabulary term comprising the token w̌, a unique
term identifier i, the boolean variable d whose value indicates the term type, and the term

4Henceforth, the term descriptor is a synonym of the term text unit descriptor.
5Henceforth, the term non-descriptor is a synonym of the term text unit non-descriptor.
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identifier j of an optionally associated controlled vocabulary term. If d = true, controlled
vocabulary term v is a text unit descriptor and j = null. Otherwise, controlled vocabulary
term v is a text unit non-descriptor and consequently j 6= null.

The abstract data type ControlledVocabularyTerm (see Appendix B.30 on page 235)
encapsulates one controlled vocabulary term. For instance, the controlled vocabulary
term ("statement/s:announcement", 2, false, 1) is a non-descriptor that directly refer-
ences the associated controlled vocabulary term ("announcement", 1, true, null), which
represents a text unit descriptor. Furthermore, the controlled vocabulary term ("public
statement", 3, false, 2) illustrates an indirect reference from a non-descriptor via the di-
rectly referenced non-descriptor "statement/s:announcement", which in turn provides a
link to the associated descriptor "announcement". Finally, a set of controlled vocabulary
terms constitutes a controlled vocabulary within the scope of our framework:

Definition 27 (Controlled Vocabulary) The non-empty set V := {v1, v2, . . . , v|V|} is a
controlled vocabulary comprising the controlled vocabulary terms vi : ControlledVocabu-
laryTerm, where i = 1, 2, . . . , |V|, such that any token is represented by at most one
controlled vocabulary term, and there exists one directly or indirectly associated text unit
descriptor for each text unit non-descriptor. All text unit descriptors in controlled vocab-
ulary V are elements of the non-empty set VD := {v | v: ControlledVocabularyTerm ∈
V s.t. v.isDescriptor() = true} ⊆ V and satisfy the constraint vj.id() = j, where
vj: ControlledVocabularyTerm ∈ VD and j = 1, 2, . . . , |VD|.

One controlled vocabulary is encapsulated by the ADT ControlledVocabulary (see Ap-
pendix B.31 on page 235). Ultimately, the dimensionality of text unit vectors, which
numerically represent pre-processed text units, is determined by the number of selected
descriptors and the cardinality of the set VD comprising all descriptors, respectively.

The set of descriptors occurring in a text unit constitutes a limited representation of
textual content, which is referred to as a text unit surrogate (cf. Korfhage, 1997, pp. 21–
24). Counting and appropriately weighting the frequency of descriptors in text units is
a prerequisite for transforming text unit surrogates into vectors. This structured and
numerical representation of text unit surrogates is required by most knowledge discovery
algorithms. Although text unit surrogates represent as much semantic content as per-
ceived necessary by the domain expert, they do not reflect all available information about
the underlying text unit. For example, this bag-of-descriptors representation of textual
content entirely, yet intentionally, disregards the ordering of terms.

Ideally, a controlled vocabulary represents a consistent set of domain-specific terms (i.e.,
atomic concepts) that are appropriate to characterize the content of text units. Taking the
information retrieval perspective, Korfhage (1997, pp. 108–109) and Colomb (2002, pp. 34–
35) discussed two desirable, application-independent properties of indexing languages.
Firstly, specificity denotes the depth of coverage of index terms. A higher specificity is
reflected by less abstract index terms and vice versa. In our framework, the adequate
level of specificity of text unit descriptors depends on domain-specific requirements. As

91



4 DIAsDEM Knowledge Discovery Process

Table 4.8: Excerpt of ISO-2788 Thesaurus for Text Documents ťE1 through ťE5 and Cor-
responding DIAsDEM-Specific Controlled Vocabulary Terms

Thesaurus Entry Controlled Vocabulary Term

announcement ("announcement", 1, true,null)
UF statement (announcement)

statement (announcement) ("statement/s:announcement", 2, false, 1)
USE announcement

stock ("stock", 4, true,null)
NT common stock

common stock ("common stock", 5, false, 4)
BT stock

the number of descriptors increases proportionally to specificity, however, the positive
impact of more specific descriptors has to be balanced with negative effects related to the
curse of dimensionality. Secondly, exhaustivity refers to the breadth of coverage of index
terms. An indexing language is exhaustive if each document can be assigned at least
one content identifier. In contrast to information retrieval systems, complete exhaustivity
is not essential in our framework because text archives often contain less important text
units as well. Text units are treated as outliers if they neither exhibit a clustering tendency
nor contain noteworthy themes. However, exhaustivity must be ensured with respect to
the truly relevant atomic concepts.

Thesaurus To facilitate the effective re-use of existing terminology collections, which
may conform to diverse standards and specifications, our notion of controlled vocabular-
ies is deliberately based on a small number of requirements. Besides simple pre-compiled
lists of tokens chosen to serve as text unit descriptors, more sophisticated controlled vo-
cabularies (e.g., taxonomies, thesauri, or ontologies; cf. Subsection 2.2.3) can be utilized
within our framework for semantic XML tagging. Given an arbitrary token, these different
types of controlled vocabularies can be used to look up the associated text unit descriptor,
if one exists. Despite the large number of possible kinds of controlled vocabularies, we
suggest using monolingual thesauri since they are a common form of vocabulary control
(Moens, 2000, p. 106) and thus widely used both in information retrieval (Baeza-Yates
and Ribeiro-Neto, 1999, pp. 170–171) and knowledge discovery (Sullivan, 2001, p. 196). In
addition, an international standard (ISO 2788, 1986) furthers the re-use and interchange-
ability of the great variety of existing, typically domain-specific thesauri (cf. Colomb,
2002, pp. 161–162).

According to ISO 2788 (1986, p. 1), thesauri indicate a priori known, generally rec-
ognized, and thus document-independent relationships between atomic concepts denoted
by terms. A thesaurus constitutes an agreed-upon indexing language that enables index-
ers to consistently summarize the subjects of documents and to select index terms by
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means of determining the a posteriori, document-dependent relationships between atomic
concepts represented by terms. Our framework pursues a similar approach: Domain-
specific knowledge in the form of a priori known relationships between atomic concepts
(e.g., "statement/s:announcement" is a synonym of "announcement") is exploited dur-
ing feature selection to ultimately identify and label high-quality concepts, which occur
at the text unit level, in the pattern discovery phase. Labels of discovered concepts and
names of semantic XML tags, respectively, analogously reflect a posteriori relationships
of atomic concepts occurring in semantically similar text units. For the purposes of our
framework, thesauri are hence a suitable kind of controlled vocabulary. Thesaurus entries
can be mapped onto controlled vocabulary terms.

Table 4.8 illustrates the mapping of thesaurus entries onto DIAsDEM-specific con-
trolled vocabulary terms. The left column lists thesaurus entries in ISO-2788 format,
which represent domain knowledge in the form of a priori known relationships between
atomic concepts. Firstly, the sense of homonymous terms is disambiguated by a supple-
mentary qualifying word in parentheses, like ‘statement (announcement)’. Secondly, the
abbreviations USE (i.e., use preferred term) and UF (i.e., used for non-preferred term)
indicate the equivalence relationship between terms, which are regarded as referring to
the same atomic concept. For instance, the terms ‘announcement’ and ‘statement (an-
nouncement)’ are synonyms, but only the former is a preferred indexing term. Thirdly,
different types of hierarchical relationships between atomic concepts are made explicit by
the abbreviations BT (i.e., broader term) and NT (i.e., narrower term). For example,
‘common stock’ is a specific kind of ‘stock’. The right column of Table 4.8 indicates the
controlled vocabulary terms associated with each thesaurus entry such that preferred in-
dexing terms correspond to text unit descriptors. Narrower index terms, like ‘common
stock’, are considered to be non-descriptors referencing the respective broader term.

Supporting the Domain Expert Since text unit descriptors play a key role in retaining
semantic meaning when representing textual content as vectors, codifying the relevant
archive-specific background knowledge is a pre-processing task of paramount importance.
A domain-specific controlled vocabulary can be constructed either by establishing a com-
pletely new one or preferably by re-using an existing one. To minimize the costs associated
with the interactive knowledge discovery phase, pre-compiled and thematically relevant
terminology collections should be re-used and possibly modified or extended. If this pre-
ferred option cannot be exercised, however, constructing a controlled vocabulary is by no
means confined as a manual task. For example, various techniques for topic discovery in
texts (see Subsection 2.2.1) as well as many different methods for learning taxonomies, the-
sauri, and ontologies (see Subsection 2.2.3) are easily applicable to at least semi-automate
the process of constructing a new controlled vocabulary. In addition, Korfhage (1997,
pp. 114–125) and Moens (2000, pp. 77–102) summarized applicable techniques for (semi-)
automatically selecting useful index terms.

Our framework targets domain-specific, as opposed to general, text archives. There-
fore, the terminological characteristics of sublanguages (cf. Sager, 1986) or languages for
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special purposes (cf. Bowker and Pearson, 2002, pp.25–27) can be exploited to relieve the
laborious task of establishing a controlled vocabulary from scratch. A sublanguage con-
siderably differs from language as a whole by specializations in syntax and the existence
of a specific vocabulary (Sager, 1986, p. 1). Thus, domain experts benefit from employing
(semi-) automated term extraction methods capable of identifying characteristic words
of specialized subject fields (Bowker and Pearson, 2002, p. 26 and pp. 165–174). For
instance, Feldman et al. (1999) described a term extraction module that identifies and
filters relevant terms in a document collection by applying both linguistic and statistical
techniques. Frequently, sublanguage terms are collocations. These multi-part tokens, like
"preferred stock", denote specific atomic concepts that are independent of the atomic
concepts represented by their components. Manning and Schütze (1999, pp. 151–189), for
example, gave an extensive overview of helpful computer-linguistic algorithms for identi-
fying collocations in text archives.

4.2.5 Mapping Text Units onto Text Unit Vectors

After establishing a domain-specific controlled vocabulary, the pre-processing step of
our knowledge discovery process is concluded by transforming tokenized and fully pre-
processed text units into numerical text unit vectors. To that end, we adopt the vector-
space model introduced by Salton (1968, pp. 236–243) and summarized in Subsection 2.1.2.
Originally proposed to efficiently store and retrieve textual content, the vector-space model
is a widely recognized numerical text representation for knowledge discovery purposes as
well (Sullivan, 2001, pp. 328–337). In particular, many clustering algorithms, which are
frequently employed in KDT applications, require a transformation of input documents
into real-valued vectors (e.g., cf. Steinbach et al., 2000; Zhao and Karypis, 2002). Firstly,
we thus introduce framework-specific properties of text unit vectors. Secondly, different
approaches to descriptor weighting are discussed before we illustrate the mapping of text
units onto vectors using a simplified example.

Terminology In the vector-space model, pre-processed text units, each of them part of
an intermediate text unit (see Definition 18 on page 74), are represented as vectors in
a feature space whose dimensions correspond to text unit descriptors of the controlled
vocabulary established beforehand. Each vector component is referred to as a weight
that reflects the importance of the respective content identifier in the associated text unit
(cf. Salton, 1968, p. 236). A weight of zero indicates that the corresponding text unit
descriptor either does not occur in or is not applicable to the associated text unit. On the
other hand, a descriptor weight other than zero indicates that the respective descriptor
(i) occurs in the associated text unit and (ii) is weighted proportionally to the size of the
corresponding real-valued vector coefficient. Thus, our preliminary notion of text unit
vectors (see Definition 17 on page 74) is extended as follows:

Definition 28 (Text Unit Vector) Given the controlled vocabulary V: ControlledVocab-
ulary and the tokenized text unit ü: TokenizedTextUnit, a text unit vector u ∈ R

n is an
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n-dimensional vector such that n = V.numberOfDescriptors(). The component υi ∈ R,
where i = 1, 2, . . . , n, of text unit vector u := [υ1, υ2, . . . , υn]T represents the weight of text
unit descriptor V.descriptor(i) in tokenized text unit ü.

According to Salton (1968, p. 236), vector components represent arbitrary document
properties. In our framework, vector space dimensions correspond to descriptor tokens
that either denote atomic concepts or named entity types. Ultimately, the vector dimen-
sionality is determined by the number of text unit descriptors in the controlled vocabu-
lary. When selecting descriptors, domain and KDT experts nevertheless have to carefully
consider any constraints on the feature space dimensionality imposed by the clustering
algorithm to be employed during pattern discovery. A text unit vector is encapsulated by
the ADT TextUnitVector (see Appendix B.25 on page 231).

Descriptor Weighting Typically, the descriptors of a domain-specific controlled vocabu-
lary are not equally useful for characterizing the content of text units (cf. Baeza-Yates and
Ribeiro-Neto, 1999, p. 24). When weighting the occurrences of descriptors in a text unit,
more important descriptors should therefore be emphasized by assigning them a higher
weight than less useful descriptors. The systematic procedure of assigning appropriate
numerical weights to descriptor occurrences in text units is commonly referred to as a
weighting scheme. Setting up a weighting scheme is neither a trivial issue nor a context-
free decision. To select a reasonable and framework-specific weighting scheme for text
unit descriptors, the objectives of our knowledge discovery process and characteristics of
typical input text archives have to be considered in particular.

In a seminal work summarizing 20 years of experimental evidence, Salton and Buckley
(1988) concluded that information retrieval performance crucially depends on the weigh-
ing scheme for content identifiers that represent documents and queries. Given an infor-
mation request expressed as a query, IR performance is improved by retrieving a larger
proportion of relevant texts (i.e., by increasing recall) and by reducing the number of mis-
takenly retrieved, irrelevant documents (i.e., by increasing precision). Consequently, term
weighting schemes in IR systems should comprise both recall- and precision-enhancing
factors. To that end, Salton and Buckley advised using composite weights that consist
of a term frequency, a collection frequency, and a normalization component. Aimed at
improving recall, the term frequency component increases the weight of content identifiers
that appear frequently in individual documents. If highly frequent terms occur in many
documents of the collection, however, term frequency by itself is not capable of ensuring
an acceptable retrieval precision. Hence, the collection frequency component increases the
weight of content identifiers that only occur in a few documents of the respective archive.
Thirdly, the normalization component corrects the term frequency bias introduced by
widely varying document lengths in the same archive.

Although our framework for semantic XML tagging pursues other objectives than ef-
fectively retrieving textual content, the thoughts on term weighting brought forward by
Salton and Buckley are nonetheless relevant. Instead of striving for retrieving relevant
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documents in response to information requests, we aim at discovering groups of semanti-
cally similar text units and assigning them content-descriptive labels. Consequently, the
effectiveness of the DIAsDEM framework cannot be assessed by standard IR metrics like
recall (i.e., ratio of retrieved relevant texts to all relevant texts in a collection) and preci-
sion (i.e., ratio of retrieved relevant texts to all retrieved texts). Nevertheless, identifying
semantic concepts in a set of text units by means of clustering the associated vectors is
facilitated by descriptor weights that exhibit the properties outlined above. In particular,
our pattern discovery phase sets out to – literally – recall, or to find, as many concepts
at the text unit level as possible, while simultaneously ensuring the desired level of con-
cept – literally – precision, or specificity. Our framework thus necessitates a descriptor
weighting scheme that effectively supports a clear separation between text units that rep-
resent distinct semantic concepts. This implies that the best descriptors occur frequently
in a text unit, but have a low collection frequency. Since this descriptor discrimination
consideration is shared with term weighting in IR, the recommendations made by Salton
and Buckley are applicable in our knowledge discovery context as well.

Salton and Buckley (1988, p. 521) argued that the effectiveness of weighting schemes
for document vectors ultimately depends on characteristics of the respective collections.
Based on experimental evidence, Salton and Buckley recommended using different term
weighting components, depending on characteristic properties of the focal text archive. In
the DIAsDEM framework, text unit vectors are created by mapping structural text units,
which usually comprise far fewer words than entire documents, onto a lower-dimensional
feature space spanned by a controlled vocabulary. Concerning the term frequency com-
ponent in this case, the authors suggested a binary weight equal to 1 for descriptors
present in a text unit and equal to 0 for non-present descriptors. Thereby, the exact
term frequency is intentionally ignored. Regarding the collection frequency component,
Salton and Buckley generally recommended an inverse document frequency weight (cf.
Subsection 2.1.2) unless the collection is very dynamic and thus requires regular updates
of document frequencies. This exclusion criterion is not met in our context since we target
domain-specific documents of rather homogeneous content only. According to Salton and
Buckley, the normalization component is negligible if the deviation in vector length is not
large. Consequently, we omit normalizing text unit vectors as they represent structural
text units that are not assumed to vary significantly in size.

Given controlled vocabulary V: ControlledVocabulary, n ∈ N pre-processed text units,
and m = V.numberOfDescriptors() text unit descriptors, the corresponding collection
of n text unit vectors is an (n × m) matrix U = [u1,u2, · · · ,un]T in the vector-space
model. Rows of matrix U represent n text unit vectors and columns correspond to m text
unit descriptors. For i = 1, 2, . . . , n and j = 1, 2, . . . ,m, the following framework-specific
weighting scheme for text unit descriptors reflects the considerations stated above:

ui[j] =

{

ln n
tuf(j)

, if tudf(i, j) > 0 and tuf(j) > 0;

0 , otherwise.
(4.1)
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Table 4.9: Text Unit Descriptors of the Controlled Vocabulary VE and Weighting Com-
ponents for Exemplary Text Documents ťE1 through ťE5

j VE.descriptor(j) tuf(j) ln n
tuf(j) Non-Descriptors Represented by VE.descriptor(j)

1 "stock" 2 2.53 "common_stock"

2 place 7 1.27
3 "expect" 2 2.53
4 "Newsdesk" 4 1.83 "newsdesk"

5 "not" 3 2.12
6 "closing" 2 2.53 "complete"

7 "disclose" 2 2.53
8 "sale" 11 0.82 "sell"

9 "unit" 12 0.73 "organization", "subsidiary"
10 "term/s:agreement" 2 2.53
11 "acquisition" 3 2.12 "acquire"

12 "agreement" 3 2.12 "agree", "definitive_agreement"
13 "announcement" 2 2.53 "statement/s:announcement"

Table 4.10: Text Unit Vectors of Intermediate Text Unit Layer r̄E1 (cf. Table 4.3 on
Page 79 and Table 4.7 on Page 86)

uE1,1 = [0, 0, 0, 0, 0, 0, 0, 0.82, 0.73, 0, 0, 0, 0]T uE1,2 = [0, 0, 0, 0, 0, 0, 0, 0.82, 0.73, 0, 0, 2.12, 0]T

uE1,3 = [0, 0, 0, 0, 2.12, 0, 2.53, 0, 0, 2.53, 0, 0, 0]T uE1,4 = [0, 1.27, 0, 1.83, 0, 0, 0, 0, 0, 0, 0, 0, 0]T

In Expression 4.1, the term tudf(i, j) denotes the frequency of text unit descriptor
V.descriptor(j) in pre-processed text unit i. Furthermore, tuf(j) denotes the frequency
of text units in the collection of size n, in which V.descriptor(j) occurs at least once.
Analogous to Salton and Buckley (1988, p. 518), ln n

tuf(j)
is the inverse document frequency

factor of our weighting scheme, which is referred to as inverse text unit frequency in our
framework. Denoted by ui[j], the jth component of text unit vector i represents the
weight of text unit descriptor V.descriptor(j) in text unit i.

Unless otherwise stated, we employ the weighting scheme specified by Expression 4.1. If
the properties of input text units differ considerably from our assumptions, this weighting
scheme should be augmented by an appropriate term frequency and/or normalization
component (cf. Salton and Buckley, 1988, p. 521). However, a discussion of alternatively
applicable, but less commonly used, weighing schemes (e.g., signal-to-noise ratio or term
discrimination value; cf. Korfhage, 1997, pp. 117–122) is beyond the scope of this work.

We illustrate our descriptor weighting scheme by mapping the fully pre-processed text
unit vectors, depicted in Table 4.7 on page 86, onto vectors. Given the small controlled
vocabulary VE: ControlledVocabulary, Table 4.9 lists all VE.numberOfDescriptors() = 13
descriptor tokens VE.descriptor(j), where j = 1, 2, . . . , 13. For each descriptor, Table 4.9
also includes the text unit frequency tuf(j) and the inverse text unit frequency ln n

tuf(j)
in
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our exemplary archive comprising the texts ťE1 through ťE5. For instance, the descriptor
"agreement" or its associated non-descriptors, like "agree", occur in three out of n = 25
sentences. Its inverse text unit frequency of 2.12 is higher than the inverse text unit fre-
quency of the descriptor "unit" (i.e., 0.73). This token and its associated non-descriptors
(e.g., "organization" and "subsidiary") appear in twelve sentences.

As depicted in Table 4.10, the tokenized text unit üE1,2 = 〈ēE1,2.placeholder(), "say",
"it", "agree", "to", "sell", "its", "consulting", "and", "technical", "organiza-
tion", ",", ēE1,3.placeholder(), ",", "to", ēE1,4.placeholder()〉 is mapped onto the 13-
dimensional text unit vector uE1,2 = [0, 0, 0, 0, 0, 0, 0, 0.82, 0.73, 0, 0, 2.12, 0]T. Tokenized
text unit üE1,2 contains zero descriptor and three non-descriptor tokens (i.e., "agree",
"sell", and "organization"). In accordance with controlled vocabulary VE, the vector
component uE1,2[8] = 0.82 denotes the weight associated with descriptor token "sale"

whereas uE1,2[9] = 0.73 is the slightly lower weight of the frequently occuring descriptor
"unit". Vector component uE1,2[12] = 2.12 corresponds to the highly weighted descriptor
"agreement". The remaining vector coefficients are equal to 0 as the respective descrip-
tors or their associated non-descriptors do not occur in text unit üE1,2.

Effect on KDT Process Flow Creating text unit vectors brings the pre-processing phase
to an end since the resulting numerical data set is input to the pattern discovery phase
of our KDT process. Unlike the pre-processing algorithms executed beforehand, vectors
are normally created more than once because text units are iteratively segmented into
semantically similar subgroups. In iteration one, all text units are transformed into vec-
tors to initiate the clustering process. In each subsequent iteration, vectors are created
only for text units that were assigned to qualitatively unacceptable and thus semantically
unlabeled clusters in the immediately preceding clustering iteration. Since the number
of text units to be clustered decreases as the iterative pattern discovery process pro-
gresses, updated and hence iteration-specific collection frequencies of descriptors have to
be computed. Only iteration-specific descriptor weights properly reflect the change in
collection frequency statistics induced by our iterative clustering procedure that, step by
step, removes text units assigned to high-quality clusters from the input data set.

In addition to the effect of iterative clustering, weighting descriptor occurrences in
the knowledge discovery phase is different from the knowledge application phase. More
specifically, the iteration-specific collection frequency components of descriptor weights
are once computed in the interactive KDT phase and merely used in the application
phase. This approach is necessary because inverse text unit frequencies must reflect the
importance of descriptor occurrences in the training archive, which may be an intentionally
biased document sample. By contrast, the descriptor frequency components of weights,
which are binary in our framework, are not iteration-specific because they solely depend
on the descriptor frequencies in the corresponding pre-processed text units.

Since mapping text units onto vectors is closely interrelated with the iterative pattern
discovery phase, the effect on the KDT process flow is discussed in detail in Subsec-
tion 4.3.4. In addition, we elaborate on the subtle distinction between creating text unit
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vectors during knowledge discovery and knowledge application in Section 4.5.

4.3 Clustering of Text Unit Vectors

As illustrated in Figure 2.1 on page 22, the pattern discovery step follows goal setting,
text selection, text pre-processing, and text transformation in the generic process for
knowledge discovery in textual databases. To attain the specific goals of our DIAsDEM
knowledge discovery process, groups of semantically similar text units have to be identi-
fied and assigned content-descriptive labels, which ultimately serve as names of semantic
XML tags enclosing the respective text units. After pre-processing, text units are repre-
sented by vectors, whose components are numerical weights of subject-specific descriptors
from a controlled vocabulary. In this section, we introduce our approach to exploratively
discovering domain-specific concepts at the text unit level. This task corresponds to find-
ing groups of similar text units in which certain combinations of atomic concepts prevail.
Once discovered, clusters of text unit vectors constitute classification knowledge, which is
exploited to semantically tag texts during knowledge application.

After giving an overview on text clustering in general, we elaborate on selecting an
appropriate clustering algorithm for the pattern discovery task at hand. Subsequently, we
discuss the DIAsDEM approach to ranking clusters of text unit vectors by decreasing
quality and describe our notion of iterative clustering in detail. Although the former task
clearly involves interpreting result patterns and is thus actually different from pattern
discovery itself, the framework-specific quality assessment procedure is nevertheless dis-
cussed in this section. Undoubtedly, the distinction between qualitatively acceptable and
unacceptable clusters of text unit vectors is an integral part of iterative clustering. In con-
trast, conceptually labeling homogeneous text unit groups is a task of the post-processing
step of our KDT process and is therefore introduced in the next section.

4.3.1 Clustering Textual Data: An Overview

This subsection summarizes relevant aspects of clustering text by introducing the building
blocks of unsupervised learning. Firstly, we outline the core idea of clustering textual
data. Secondly, the fundamental concepts of text similarity and dissimilarity are discussed
before we present a high-level categorization of existent clustering algorithms. Finally, we
concisely survey relevant issues in assessing the validity of clustering results.

The Notion of Clustering According to Kaufman and Rousseeuw (1990, p. 1), cluster-
ing is “the art of finding groups in data.” The aim of cluster analysis is to identify groups,
or clusters, of objects in a data set that exhibit the following characteristics: Objects in
the same cluster are very similar, but objects assigned to different clusters are as dissimilar
as possible. Analogously, Han and Kamber (2006, pp. 383–384) referred to the activity“of
grouping a set of physical or abstract objects into classes of similar objects” as clustering.
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The authors stressed that many research disciplines (e.g., statistics and machine learning)
have contributed towards the improvement of clustering techniques. Han and Kamber
emphasized the wide range of possible application areas for cluster analysis that include
pattern recognition, biological studies, image processing, and marketing. Clustering text-
ual data is an important technique, which is often applied, for instance, in information
retrieval (cf. Rasmussen, 1992; Wu et al., 2004), Web content mining (cf. Chakrabarti,
2003, pp. 79-123), or topic discovery (cf. Subsection 2.2.1).

Jain et al. (1999, p. 264) introduced clustering as“the unsupervised classification of pat-
terns (observations, data items, or feature vectors) into groups (clusters).” This definition
places particular emphasis on the distinction between cluster analysis as an unsupervised
learning method and classification as supervised learning. Unlike classification, clustering
requires neither pre-defined classes nor class-labeled training objects, but instead strives
for the explorative discovery of unknown classes in data sets. Nevertheless, the close link
between clustering and classification becomes apparent if the former technique is used to
discover initial categories in a data set, which are afterwards assigned to new objects by
means of classification (Vazirgiannis et al., 2003, p. 20).

Bringing together the components of a clustering task discussed by Jain et al. (1999,
pp. 266–268) and the generic clustering process described by Vazirgiannis et al. (2003,
pp. 20–21), a typical clustering process consists of the following five steps:

1. Representing objects involves choosing the objects to be clustered, as well as select-
ing, pre-processing existing, and possibly creating new features that appropriately
represent objects. This initial step must ensure the proper encoding of information
about objects, which is likely to be relevant for the clustering task at hand.

2. Defining an object proximity measure refers to selecting a suitable measure to quan-
tify the (dis-) similarity between usually pairs of objects, which are represented by
the features chosen beforehand. Since the notion of (dis-) similarity is fundamental
in clustering, the proximity measure must be appropriate to the data domain.

3. Grouping objects can be performed in a number of different ways. Hence, a suitable
algorithm has to be chosen, parameterized, and executed. In particular, knowledge
discovery experts take into account a priori expectations about the characteristics of
clusters that are likely to occur in the data set. Selecting an algorithm corresponds
above all to choosing a proper clustering criterion (e.g., minimization of a cost
function) that determines how groups of similar objects are formed in detail.

4. Concisely describing clusters, also referred to as data abstraction, is the optional
step of creating a simple and compact description of all discovered clusters. For
example, identified clusters may be visualized by representative objects to facilitate
the interpretation of clustering results by human beings.

5. Assessing cluster validity corresponds to validating the resulting clusters by using
appropriate criteria and techniques. Various approaches to cluster validity analysis
set out to distinguish ‘good’ clustering results from ‘poor’ ones. To that end, ob-
jective criteria are applied to determine whether output clusters are meaningful in

100



4.3 Clustering of Text Unit Vectors

the sense that they are unlikely to have occurred by chance or as an artifact of the
algorithm.

In the DIAsDEM framework for semantic XML tagging, the clustering task is em-
bedded into a knowledge discovery process as the text mining step. Consequently, the
first component of the generic clustering task (i.e., representing objects) corresponds to
selecting, pre-processing, and transforming text within our KDT process. As part of the
actual pattern discovery step, a proximity measure and an algorithm are chosen prior to
grouping text unit vectors. As explained above, the validity of resulting text unit vector
clusters is assessed in each iteration of our iterative clustering approach.

In the remainder of this subsection, we focus on relevant proximity measures, concisely
categorize major clustering algorithms, and briefly survey important cluster validity con-
cepts. In particular, we deliberately restrict the discussion to grouping objects repre-
sented by numerical vectors of ratio-scaled features without missing values and the need
to normalize the ranges of features (e.g., cf. Jain and Dubes, 1988, p. 13, pp. 19–20,
and pp. 23–25). This restriction is motivated by the corresponding characteristics of text
unit vectors to be grouped in our knowledge discovery process. They solely comprise
ratio-scaled descriptor weights without missing values because a weight of zero indicates
a non-present descriptor. The varying ranges of vector components do not have to be
normalized since they represent purposefully chosen descriptor weights measured on the
same ‘scale’ of importance. On the contrary, any range normalization, which may be
required by certain clustering algorithms, has to preserve the relative differences between
weights of more and less important descriptors.

Similarity and Dissimilarity Algorithmically assigning similar objects to the same clus-
ter and dissimilar objects to distinct clusters necessitates a suitable notion of proximity.
Everitt et al. (2001, p. 35) emphasized that identifying clusters in data sets requires knowl-
edge about how ‘close’ two objects are to each other or how ‘far apart’ they are. Thus,
most clustering algorithms assume a numerical measure, or index, of object proximity
that solely depends on the values of encoded features (Jain et al., 1999, p. 271).

The proximity between pairs of documents can either be determined directly (e.g.,
by asking human beings to judge the perceived proximity between any two texts) or
indirectly by computing the value of a numerical proximity measure for each pair of
encoded document features (cf. Everitt et al., 2001, p. 35). Since the former approach
is not feasible when processing large-scale text archives, we limit our discussion to the
indirect measurement of document proximity. Adopting the information retrieval vector-
space model (cf. Subsection 2.1.2 on page 23), let t = [τ1, τ2, . . . , τm] denote6 an m-
dimensional property vector representing a text document such that m ∈ N, ||t|| 6= 0,

6Notation: Let x = [ξ1, ξ2, . . . , ξm]T and y = [η1, η2, . . . , ηm]T denote two m-dimensional column vectors,
where x,y ∈ R

m and m ∈ N. The scalar product of vectors x and y is denoted by x · y =
∑m

i=1 ξi · ηi.
The Euclidean norm of vector x is denoted by ||x|| = (

∑m
i=1 ξ2

i )1/2.
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Table 4.11: Common Proximity Measures between Two Text Documents Represented by
m-Dimensional Property Vectors t1 and t2

Proximity Measure Definition

Cosine similarity simCos(t1, t2) = t1 · t2 / ||t1|| · ||t2|| ∈ [0; 1]

Euclidean distance distEuc(t1, t2) = ||t1 − t2|| ≥ 0

Extended Jaccard similarity simExtJac(t1, t2) = t1 · t2 / (||t1||
2 + ||t2||

2 − t1 · t2) ∈ [0; 1]

and τi ≥ 0 for i = 1, 2, . . . ,m. Furthermore, let T = [t1, t2, · · · , tn]T denote an (n × m)
matrix, which represents a text collection and comprises n ∈ N property vectors.

A proximity measure is either a similarity or a dissimilarity. The more two objects
resemble each other, the larger a similarity index and the smaller a dissimilarity index
(Jain and Dubes, 1988, p. 11). For i = 1, 2, . . . , n and j = 1, 2, . . . , n, let prox(ti, tj)
denote a proximity index between two property vectors in T. According to Jain and
Dubes (1988, pp. 14-15), proximity indices must satisfy the following three properties:

1. (a) For a dissimilarity, the dissimilarity of any property vector to itself equals zero:
prox(ti, ti) = 0 ∀ i.
(b) For a similarity, the similarity of any property vector to itself is not less than
the similarity of any other property vectors: prox(ti, ti) ≥ maxj prox(ti, tj) ∀ i.

2. Proximity indices are symmetric: prox(ti, tj) = prox(tj, ti) ∀ i, j.
3. Proximities are non-negative numbers: prox(ti, tj) ≥ 0 ∀ i, j.

Henceforth, we distinguish similarity indices, which are denoted by sim(ti, tj), from
dissimilarity indices denoted by dis(ti, tj). A dissimilarity measure is termed metric or
distance measure, which is denoted by dist(ti, tj), if it fulfills the triangular inequality
dist(ti, tj) ≤ dist(ti, tk)+dist(tk, tj) ∀ i, j, k, where k = 1, 2, . . . , n, and satisfies the con-
dition dist(ti, tj) = 0 → ti = tj (Jain and Dubes, 1988, pp. 14-15). Measuring distances
between objects in a geometric sense is often much more intuitive than using a similarity
index (Grabmeier and Rudolph, 2002, p. 312). A distance index can be transformed into
a similarity index by various methods, such as sim(ti, tj) := exp(−dist(ti, tj)).

Table 4.11 contains a list of three proximity measures for property vectors, which are
often discussed in the context of text clustering for knowledge discovery (e.g., cf. Ghosh
and Strehl, 2006, pp. 78–79). The cosine similarity, however, constitutes “the classi-
cal information retrieval approach to comparing documents” (Weiss et al., 2005, p. 91).
Following extensive usage in conjunction with the seminal Smart information retrieval
system (Salton, 1968, p. 238), the cosine similarity has become a widely used proximity
measure for textual data in both IR (Grossman and Frieder, 2004, p. 18) and knowledge
discovery (Feldman and Sanger, 2007, p. 85). simCos(t1, t2) is defined as the cosine of the
angle between property vectors t1 and t2. As the angle between two identical vectors is
0◦, their cosine similarity equals 1. The cosine similarity between two orthogonal vectors
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equals 0 since the angle between them is 90◦. The cosine similarity takes values in [0; 1]
due to the non-negative property of vector components in the vector-space model.

Han and Kamber (2006, p. 388) noticed that the Euclidean distance is “the most popu-
lar distance measure” for objects described by interval-scaled features. distEuc(t1, t2) ≥ 0
is defined as the geometric distance of the property vectors t1 and t2 in the multi-
dimensional vector space. This metric is a special case (i.e., λ = 2) of the Minkowski
metric distMink(λ, t1, t2) = (

∑m
i=1 |τ1,i − τ2,i|

λ)1/λ, where λ ≥ 1. The Euclidean distance
assumes some degree of commensurability between the different features of property vec-
tors, which is typically accomplished by standardization of variables (cf. Hand et al., 2001,
pp. 32-36). In the vector-space model, however, this assumption is always satisfied since
all descriptor weights are measured on the same ‘scale’ of importance.

The extended Jaccard similarity is termed in accordance with Ghosh and Strehl (2006,
p. 79). Salton (1989, p. 319) and Rasmussen (1992, p. 422), for instance, recommended
simExtJac(t1, t2) for usage in document clustering because it is simple and outputs normal-
ized similarity values in [0; 1] when the components of property vectors are non-negative.
For binary property vectors, this similarity measure equals the ratio of the number of
features assuming the value 1 in both t1 and t2 to the number of features assuming the
value 1 in t1 or t2. Thereby, the similarity index is computed without taking the typ-
ically large number of features assuming the value 0 in both vectors into consideration.
simExtJac(t1, t2) extends this notion of similarity to the vector-space model.

Comparing proximity measures in detail is beyond the scope of this work. Ghosh and
Strehl (2006, p. 80) argued that distEuc(t1, t2) is translation-invariant and scale-variant
whereas simCos(t1, t2) is scale-invariant and translation-variant. By means of geometric
analysis (cf. Jones and Furnas, 1987), Ghosh and Strehl showed that simExtJac(t1, t2) has
aspects of both other proximity measures. Having conducted experiments on the impact
of similarity measures on clustering text, Ghosh and Strehl concluded that the cosine
and the extended Jaccard similarity are best in capturing human categorization behavior.
In contrast, the Euclidean distance is not appropriate for high-dimensional, sparse data
sets. Choosing a similarity measure for a specific application “is not prescribed by any
theoretical considerations,” summarized Salton (1989, p. 319), but is rather “left to the
user.” This statement apparently holds (cf. Everitt et al., 2001, pp. 52–53).

Categorization of Clustering Algorithms Since unsupervised learning is an important
technique in a variety of domains, a huge number of clustering algorithms have been
proposed in the last decades (e.g., cf. Hartigan, 1975; Jain and Dubes, 1988; Kaufman
and Rousseeuw, 1990; Everitt et al., 2001; Wu et al., 2004). To categorize this variety of
methods, several taxonomies of clustering approaches were promoted. For instance, Jain
et al. (1999, p. 275), Grabmeier and Rudolph (2002, p. 340), Jain et al. (2004, p. 261),
and Berkhin (2006) classified the most important clustering algorithms in slightly different
ways. Reviewing the entire literature on categorizing clustering techniques is beyond the
scope of this work. However, we concisely introduce the following five major categories,
which are selected in accordance with Vazirgiannis et al. (2003, pp. 23–42) as well as Han
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and Kamber (2006, pp. 398–401):

• Partitioning algorithms decompose the entire data set into exactly one set of dis-
joint clusters such that each object belongs to one cluster (e.g., see Everitt et al.,
2001, pp. 90–118). Typically, partitioning methods, such as the commonly used
k-means algorithm (MacQueen, 1967), create an initial partitioning of objects and
subsequently either minimize or maximize an algorithm-specific clustering criterion
by iteratively re-assigning objects to clusters. To avoid an exhaustive enumeration
of all possible solutions, most partitioning algorithms adopt heuristics.

• Hierarchical algorithms create a tree-like decomposition of the data set into several
nested sets of clusters (e.g., see Everitt et al., 2001, pp. 55–89). These clustering
methods are either agglomerative or divisive. The former take a bottom-up approach
by successively merging individual objects or clusters into larger clusters. Divisive,
or top-down, methods initially assign all objects to one cluster and successively
create smaller clusters by splitting larger ones. Hierarchical algorithms require a
stopping criterion if exactly one ‘optimal’ set of clusters is desired.

• Density-based algorithms enable the discovery of arbitrarily shaped clusters and the
detection of outliers (e.g., see Han and Kamber, 2006, pp. 418–424). Informally, the
density of an object’s neighborhood with a given radius is defined as the number of
objects contained therein. Most partitioning algorithms are based on the distance
between objects and thus work well for finding only spherical clusters. In contrast,
density-based algorithms regard clusters as highly dense, contiguous regions of ob-
jects. Clusters are separated by regions of lower density comprising only noise.

• Grid-based algorithms initially quantize the feature space into a finite number of
multi-dimensional cells. This data structure is a spatial index of the typically large
and high-dimensional data set, which allows for a coarse, yet efficient, clustering
(e.g., see Han and Kamber, 2006, pp. 424–429). Instead of grouping input objects,
all clustering operations are performed on the quantized feature space. Thus, the
processing time of most grid-based methods is independent of the object number,
but rather depends on the smaller number of cells in each feature space dimension.

• Model-based algorithms attempt to learn generative mathematical models from the
data such that each model represents one particular cluster (Zhong and Ghosh,
2003, pp. 1001–1002). These methods often assume the input data to be generated
by a mixture of probability distributions. Typically, the model type is specified
a priori whereas the model structure and its parameters have to be determined and
estimated, respectively. Han and Kamber (2006, pp. 429–434) outlined a statistical,
a machine learning, and a neural network approach to model-based clustering.

Without doubt, many algorithms adopt ideas from several categories (Han and Kamber,
2006, p. 400). Self-Organizing Maps (cf. Kohonen, 2001) are, for example, constructed
by partitioning and model-based clustering algorithms (Zhong and Ghosh, 2003, p. 1003).
Furthermore, Jain et al. (1999, pp. 274–275) introduced five additional categorization cri-
teria for clustering algorithms that may effect all methods regardless of their belonging
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to the major categories. For instance, the hard vs. fuzzy criterion refers to the number
of clusters that each input object can be assigned to. Hard, or so-called crisp, meth-
ods allocate each object to exactly one cluster while fuzzy algorithms assign degrees of
membership in several clusters to objects (cf. Vazirgiannis et al., 2003, p. 24).

In the context of thematically grouping text documents, the distinction between hi-
erarchical and non-hierarchical methods is often considered the primary dichotomy. For
instance, Salton (1989, pp. 326–341), Rasmussen (1992, pp. 425–427), as well as Manning
and Schütze (1999, pp. 495–528) used this top-level criterion to survey clustering algo-
rithms for textual data. Manning and Schütze emphasized that hierarchical methods are
preferable for detailed analysis because a document hierarchy conveys more information
than a single document partition. Non-hierarchical algorithms should be favored when
processing large collections or if efficiency is a decisive issue. Referring to Steinbach et al.
(2000), however, Grossman and Frieder (2004, p. 107) noticed that hierarchical methods
do not necessarily outperform other methods with respect to cluster quality.

Cluster Validity Assessment Hand et al. (2001, p. 295) stressed that in general the
“validity of a clustering is often in the eye of the beholder.” Quantifying cluster validity,
the authors continued, “is difficult, if not impossible, since the interpretation of how
interesting a clustering is will inevitably be application-dependent and subjective to some
degree.” Analogously, Silberschatz and Tuzhilin (1996) emphasized the fundamental role
of two subjective measures of interestingness (i.e., unexpectedness and actionability) in
assessing knowledge discovery results. Furthermore, He et al. (2004, pp. 112–113) raised
awareness of the inherent subjectivity when quantitatively measuring cluster quality.

Although the important human influence on quality assessment is recognized, the terms
cluster validation and cluster validity assessment, respectively, denote the process of quan-
titatively and objectively evaluating the results of cluster analysis (cf. Jain and Dubes,
1988, pp. 143–160). To ensure objectivity, Jain and Dubes based their validation frame-
work on the premise that problems of cluster validity are inherently statistical. More
specifically, a clustering is valid if it is statistically unusual in some objectively defined
sense. Proposing cluster validity indices is easy whereas selecting appropriate index
thresholds to distinguish usual from unusual clusterings is difficult and thus requires a
sound statistical approach (i.e., hypothesis testing or Monte Carlo analysis).

Indices of cluster validity measure the adequacy of a clustering in an objectively in-
terpretable way (Jain and Dubes, 1988, pp. 160–165). More specifically, a clustering is
adequate if it provides true information about the data set or reflects the intrinsic char-
acter of the data. Jain and Dubes as well as Vazirgiannis et al. (cf. 2003, pp. 95–96)
distinguished the following three types of cluster validity indices:

• External indices evaluate the result against a priori specified, external information
(e.g., thematic labels) that reflects the truly existing clusters in the data set.

• Internal indices assess the adequacy of a clustering by utilizing only the data set
itself and internally derived information, such as the proximity matrix.
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Table 4.12: Five Relative Cluster Validity Indices

Cluster Validity Index Range Objective

Original Dunn index (e.g., cf. Vazirgiannis et al., 2003, pp. 104–105) [0;∞) Maximize!

Davies-Bouldin index (e.g., cf. Vazirgiannis et al., 2003, pp. 105–106) [0;∞) Minimize!

Average silhouette width (Kaufman and Rousseeuw, 1990, pp. 83–88) [−1; 1] Maximize!

SDbw index (e.g., cf. Vazirgiannis et al., 2003, pp. 113–115) [0; 2] Minimize!

Overall cluster quality index (He et al., 2004, pp. 114–116) [0; 1] Minimize!

• Relative indices allow for the comparison between different clusterings of the same
data set. In particular, the most likely number of clusters in the data and the optimal
parameters for a given algorithm, respectively, can be determined by relative criteria
(cf. Milligan and Cooper, 1985; Vazirgiannis et al., 2003, pp. 102–103).

In this work, we focus on relative validity indices for two reasons. Unlike benchmark
studies that compare clustering algorithms on the basis of pre-classified document col-
lections (e.g., Steinbach et al., 2000), our DIAsDEM framework does not assume the
existence of test archives marked up at the text unit level. In contrast to both external
and internal criteria with high computational demands, relative clustering criteria typi-
cally require fewer computations and do not involve statistical tests (Vazirgiannis et al.,
2003, p. 102). Table 4.12 lists five commonly used relative indices applicable for crisp
algorithms, which represent different approaches to relative cluster validity assessment.
Elaborating on their intricacies, however, is beyond the scope of this work.

Most relative criteria compare intra-cluster similarity, which is often referred to as clus-
ter compactness or cohesion, and inter-cluster similarity, the so-called cluster separation.
Each specific validity index nevertheless takes an individual approach to actually defining
a valid clustering. For example, the original Dunn index aims at identifying compact, well-
separated, and spherical clusters in a geometrical sense. However, this index is “overly
sensitive to noisy clusters” (Bezdek and Pal, 1998, p. 301). To reduce the effect of outliers
present in the data, Bezdek and Pal thus proposed several generalizations of this index.
The SDbw index, for instance, takes the density of regions between clusters into consid-
eration when assessing cluster separation. Finally, the overall cluster quality index is a
weighted, additive combination of cluster compactness and separation.

Determining the number of clusters in a data set is one of the most difficult decisions to
be made in cluster analysis (Everitt et al., 2001, p. 179). In this context, several authors
successfully applied cluster validity criteria in empirical experiments (e.g., cf. Vesanto
and Alhoniemi, 2000; Steinbach et al., 2000; Stein et al., 2003). Vesanto and Alhoniemi
(2000, p. 593) concluded that “in practice, though, it is better to use the index values
as a guideline rather than absolute truth.” Although Jain and Dubes (1988, pp. 143–
201) and Vazirgiannis et al. (2003, pp. 93–121) presented a detailed overview of cluster

106



4.3 Clustering of Text Unit Vectors

validity assessment, the authors (perhaps intentionally) avoided giving any advice on how
to select an appropriate validity index. In addition, Estivill-Castro (2002, p. 71) confirmed
the application-dependency of cluster quality by stressing that validity “depends on the
data set where a claim of existence of structure us made.” Given the large number of
available validity indices, a KDT expert apparently has no choice, but to employ several
of them when conducting a cluster analysis in a new domain.

4.3.2 Selecting a Clustering Algorithm

In Subsection 2.1.1, we have stressed that knowledge discovery strives to find new, pre-
viously unknown patterns in data. Facing the vast and continuously growing literature
on clustering methods, researchers and practitioners alike have to bear in mind that dif-
ferent algorithms are effective in identifying different kinds of clusters (Hand et al., 2001,
pp. 295–296). Stein and Meyer zu Eissen (2003, p. 257), for instance, characterized sev-
eral algorithms with respect to geometrical properties of the recognized clusters. Since
clustering is above all employed to discover unexpected structures in data, Hand et al.
simultaneously warned of imposing too many preconceptions on the analysis.

Consequently, selecting appropriate clustering algorithms for usage in the DIAsDEM
knowledge discovery process is of paramount importance. In this subsection, we initially
describe criteria for choosing clustering algorithms suitable for application in our frame-
work. Thereafter, we outline three adequate clustering algorithms.

Selection Criteria According to Everitt et al. (2001, p. 179), choosing an appropriate
clustering method requires considering issues in algorithm design to ensure an effective
discovery of the suspected types of clusters. In addition, suitable clustering algorithms
must be “insensitive to error” and “available in software.” Although these suggestions are
fairly general and assume a priori knowledge of cluster properties, Everitt et al. (2001,
p. 178) provided hints concerning the general applicability of methods depending on the
types of attributes occurring in the input data. For example, Self-Organizing Maps (cf.
Kohonen, 2001) are considered useful for large data sets of objects described by continuous
features. Analogously, Kaufman and Rousseeuw (1990, pp. 50–52) suggested choosing
algorithms primarily based on the measurement scale of object features.

Although most clustering applications pose individual requirements, Han and Kamber
(2006, pp. 385–386) identified nine typical ones. These generic requirements stand as
potential selection criteria for choosing clustering methods in our knowledge discovery
process. Two of them, the ability to deal with different types of attributes and constraint-
based clustering, are not relevant in our framework. Text unit vectors have real-valued
components only (see Definition 28 on page 94), and there are no additional application-
specific constraints that need to be satisfied. The ability to find clusters of arbitrary
shape is possibly relevant, but properties of clusters to be discovered are often likely to
be unknown in advance. Minimizing the domain knowledge necessary to determine input
parameters is only partially relevant as we explicitly incorporate domain knowledge any-
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way (cf. Subsection 4.2.4). The effective handling of high-dimensional data sets is another
partially relevant requirement. Despite employing a controlled vocabulary when mapping
text units onto vectors (cf. Subsection 4.2.5), the resulting, typically 100- through 300-
dimensional vectors are neither low- nor particularly high-dimensional. In our context, it
is finally desirable, rather than strictly required, that clustering algorithms are insensitive
to the order of input text unit vectors.

Three generic requirements for clustering algorithms proposed by Han and Kamber
(2006, pp. 385–386) are particularly relevant in our KDT process. Firstly, the method
has to be highly scalable with respect to the number of text unit vectors because training
archives may be very large. Secondly, the ability to deal with noisy data is relevant
since we cannot assume real-world archives to comprise solely text units that exhibit a
clustering tendency. Thirdly, the clustering results (i.e., groups of text unit vectors) must
be interpretable, comprehensible, and usable to distinguish qualitatively acceptable from
unacceptable clusters (cf. Section 3.3).

If specific requirements are addressed at all, authors presenting the application of clus-
tering techniques in information retrieval or knowledge discovery in textual databases
mostly focus on requirements similar to those outlined by Han and Kamber (2006, pp. 385–
386). For example, Zamir et al. (1997) discussed two domain-specific requirements in
addition to constraints concerning the scalability of the clustering algorithm. Wen et al.
(2001) searched for a clustering algorithm satisfying one application-specific requirement
as well as two generic ones: scalability and minimal needs of domain knowledge to deter-
mine input parameters of the algorithm. Furthermore, Hotho et al. (2003a, pp. 138–139)
elaborated on requirements concerning the high-dimensionality of textual data sets as well
as the interpretability and subjectivity of clustering results.

Clustering algorithms to be employed within the DIAsDEM framework should comply
with the following six main requirements, which are ordered by decreasing importance:

1. Ability to deal with real-valued features: Our notion of text unit vectors (see Defini-
tion 28 on page 94) entails this fundamental, compulsory requirement.

2. Ability to execute in application mode: The second compulsory requirement is im-
posed by the two-phase DIAsDEM framework (cf. Chapter 3). A domain-specific
KDT process flow is interactively parameterized in the knowledge discovery phase.
Subsequently, this process flow is automatically executed in the knowledge applica-
tion phase. More specifically, new text documents are automatically tagged in the
second phase by utilizing classification knowledge acquired in phase one. There-
fore, adequate clustering methods must provide an application mode in which new
text unit vectors are assigned to previously discovered clusters (e.g., centroid-based
classification; cf. Weiss et al., 2005, pp. 113–114).

3. Interpretability and usability : Basically, algorithms must be available in software
to be usable. Our notion of interpretability corresponds to distinguishing qualita-
tively acceptable clusters of text unit vectors from unacceptable ones. Concretely,
clustering results must be output in a form that enables the application of our
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DIAsDEM-specific cluster quality criteria. To meet this compulsory requirement,
text unit vectors may, for instance, be assigned the cluster identifiers.

4. Ability to deal with noisy data: Although we assume a clustering tendency at the text
unit level in training and application archives (cf. Section 3.2), it is not reasonable
to assume noise-free data sets. In our context, noise corresponds to text unit vectors
that represent text units featuring rarely occurring subjects, topics, or themes. Since
noisy text units are not semantically marked up at best, the clustering algorithm
should be capable of treating their respective vectors accordingly.

5. Scalability : Furthermore, adequate algorithms should be highly scalable to efficiently
process training archives comprising a large number of text units. Thereby, the need
to perform cluster analysis based on random, often relatively small samples of text
unit vectors should be eliminated to the greatest extent possible.

6. Proven track of KDT applications: Finally, our less important requirements shall be
covered by this proxy, but neither necessary nor sufficient, criterion. This includes
the ability to find arbitrarily shaped clusters, the minimization of required knowledge
to determine parameters, as well as challenges related to the dimensionality and
sparsity of input data. Hence, algorithms are assumed to be appropriate for our
framework if they were successfully used for clustering textual data.

Having established six criteria for the framework-specific selection of adequate clustering
methods, the“user’s dilemma”(Dubes and Jain, 1976, p. 247) of finally choosing a specific
algorithm still remains to be solved. Unfortunately, it is highly likely that several existing
clustering algorithms fulfill our requirements. In a similar context, Dubes and Jain (1976,
p. 247) stressed that searching for a single ‘best’ clustering technique “would be fruitless
and contrary to the very nature of clustering.” Due to the exploratory, rather than
confirmatory, character of cluster analysis (cf. Estivill-Castro, 2002, p. 71), this somewhat
pragmatic argument is widely supported. For example, Kaufman and Rousseeuw (1990,
p. 37), Rasmussen (1992, p. 436), and Everitt et al. (2001, p. 177) emphasized that it
is usually advisable to employ multiple clustering algorithms in combination with cluster
validation methods capable of checking the reliability of the results.

In the remainder of this subsection, we characterize three clustering techniques that
satisfy most requirements for usage in the DIAsDEM framework: the bisecting k-means
algorithm (Steinbach et al., 2000), one algorithm based on the Self-Organizing Map
paradigm (i.e., Batch Map; Kohonen, 2001, pp. 139–140), and a method taking a shared
nearest neighbor approach (i.e., SNN Clustering; Ertöz et al., 2004). Our selection is of
course debatable, but it reflects three distinct approaches to clustering textual data. Ta-
ble 4.13 provides a qualitative summary of these three algorithms by focusing on the
fulfillment of our six selection criteria.

Bisecting k-Means The bisecting k-means algorithm (Steinbach et al., 2000) extends
the k-means algorithm (MacQueen, 1967) or, more precisely, the large family of related
methods (cf. Everitt et al., 2001, p. 100). The standard k-means algorithm is a partitioning
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Table 4.13: Summary of Three Proposed Clustering Algorithms w.r.t. the Fulfillment of
DIAsDEM-Specific Selection Criteria

Requirement Bisecting k-Means Batch Map SNN Clustering

Ability to deal with real-valued features yes yes yes

Ability to execute in application mode yes yes yes

Interpretability and usability yes yes yes

Ability to deal with noisy data no no yes

Scalability yes yes no

Proven track of KDT applications yes yes yes

clustering method, which groups the input data set into an a priori specified number of
clusters (i.e., the clustering). Each cluster is represented by one centroid defined as the
mean vector of all vectors assigned to the respective cluster. Given a distance measure, the
desired number of clusters k ∈ N, and a data set comprising n vectors xi ∈ R

m (n,m ∈ N,
n > k, and i = 1, 2, . . . , n), the standard k-means algorithm is defined as follows (cf. Han
and Kamber, 2006, p. 403):

1. Select k arbitrary (e.g., randomly chosen) vectors as the initial centroids.
2. For each vector, find the nearest centroid and assign the vector to its cluster.
3. For each cluster, compute the centroid.
4. Unless the assignment of vectors to clusters does not change, go to step 2.

Steinbach et al. (2000) as well as Han and Kamber (2006, p. 403) referred to the above
method as the k-means algorithm. Strictly speaking, however, it is the so-called Forgy’s
algorithm (see Forgy, 1965; Gose et al., 1996, pp. 211-213). MacQueen without a doubt
coined the term k-means, but simultaneously referred to Forgy (1965) as an iterative,
“two-step improvement procedure” (MacQueen, 1967, p. 294). Unlike Forgy’s algorithm,
the original k-means method incrementally recomputes the centroids and performs only
two passes through the data set (see MacQueen, 1967; Gose et al., 1996, pp. 213–215).

As the standard k-means minimizes the squared distances between vectors and their
centroids, it is only capable of discovering convex clusters of approximately equal size
(Han and Kamber, 2006, pp. 403–404). When heuristically minimizing the total sum of
squared distances, k-means often converges to a local, instead of a global, minimum. The
validity of the resulting clustering thus depends on the initial centroids (Berkhin, 2006,
p. 41). To alleviate this negative effect, k-means is typically executed multiple times with
different initializations. The final clustering is chosen based on an appropriate cluster
validity criterion. Moreover, the standard k-means is very sensitive to noise, but it can
be augmented to detect outliers (e.g., cf. Larsen and Aone, 1999, p. 18).

The bisecting k-means algorithm requires the same input as the standard k-means and
encompasses the following steps (cf. Steinbach et al., 2000; Savaresi et al., 2002):
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1. The initial clustering consists of one cluster that represents the entire data set.
2. Selection step: Arbitrarily choose one cluster, for instance the largest, to be split.
3. Bisecting step: Execute the standard k-means algorithm to find two sub-clusters of

the selected cluster and remove the selected cluster from the clustering.
4. Unless the clustering consists of k clusters, go to step 2.

Clearly, the bisecting k-means method combines elements of both partitioning (i.e., the
bisecting step) and divisive hierarchical clustering (i.e., the selection step). This algo-
rithm shares many characteristics of the standard k-means: discovery of convex clusters,
sensitivity to noise, and the importance of initial centroids. Consequently, Steinbach et al.
(2000) suggested executing the bisecting step multiple times and selecting the ‘best’ split
based on cluster validity. According to Steinbach et al., the bisecting k-means has a time
complexity that is linear in the number of input vectors and can therefore be considered
scalable. In addition, this algorithm is executable in application mode using a centroid-
based classifier (cf. Weiss et al., 2005, pp. 113–114). After performing exactly the same
data pre-processing steps as in the knowledge discovery phase, a new vector is assigned
to the cluster that is represented by the nearest centroid. Finally, the generated mapping
of input vectors onto cluster identifiers can be easily interpreted and used to compute our
DIAsDEM cluster quality criteria.

Having conducted a large-scale experiment in comparing document clustering tech-
niques, Steinbach et al. (2000) concluded that the bisecting k-means algorithm outper-
forms the standard k-means. More surprisingly, this technique performed as good as,
or even better than, several agglomerative hierarchical clustering methods. In addition,
Dhillon and Modha (2001), Zhao and Karypis (2006), as well as Yoo and Hu (2006), for
example, successfully deployed the bisecting k-means algorithm to cluster textual data.

Batch Map Introduced by Kohonen (1993, pp. 1149–1150) as a very fast algorithm,
Batch Map belongs to the large family of Self-Organizing Map (SOM; cf. Kohonen,
2001) algorithms. Before discussing Batch Map, we therefore concisely outline relevant
properties of the basic SOM algorithm (cf. Kohonen, 2001, pp. 105–115).

Conceived by Teuvo Kohonen in 1982, the original SOM algorithm maps a high-
dimensional input space onto a low-dimensional output space, which is usually a two-
dimensional grid referred to as the map. In particular, the “SOM thereby compresses
information while preserving the most important topological and/or metric relationships”
of the input vectors (Kohonen, 2001, p. 106). In the two-dimensional case, the resulting
map consists of units that are arranged as an ordered, mostly rectangular or hexagonal
array. The topological neighborhood of a map unit encompasses, for example, all units in
the array that are positioned within a certain radius around the focal unit. Given n ∈ N

input vectors xi ∈ R
m, where i = 1, 2, . . . , n and m ∈ N, each of k ∈ N units is associated

with one reference vector mj ∈ R
m, where j = 1, 2, . . . , k. Each reference vector, referred

to as a generalized median by Kohonen, fully represents input vectors assigned to its unit
and partially represents input vectors that are assigned to other units in the topological
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neighborhood of its unit. Hence, the SOM algorithm is effective in both visualizing and
clustering high-dimensional data based on topological similarity.

Elaborating on the intricacies of training a Self-Organizing Map is beyond the scope
of this work. It is noteworthy, however, that the SOM is a competitive-learning neural-
network algorithm (Kohonen, 1993, p. 1147). During the learning phase, all topologically
connected reference vectors are initialized and thereafter incrementally adjusted such that
the grid “adaptively assumes a form by which it best describes the input vectors in an
ordered, structured fashion.” The entire learning process is highly parameterizable to
adequately define, for instance, the shape and size of the topological neighborhood.

Given a proximity measure, the properties of the desired result map (i.e., its form and
the number of map units k ∈ N), a definition of the topological neighborhood, and a
data set comprising n vectors xi ∈ R

m as specified above, the Batch Map algorithm is
defined as follows (cf. Kohonen, 1993, p. 1150):

1. Select k arbitrary (e.g., randomly chosen) vectors as initial reference vectors.
2. For each map unit j = 1, 2, . . . , k, collect a list of input vectors whose nearest

reference vector belongs to the topological neighborhood of map unit j.
3. For each map unit j, the new reference vector mj is the mean vector of all input

vectors assigned to the respective list of map unit j created in step 2.
4. Go to step 2 “a few times.”

Kohonen (1993, p. 1150) emphasized that Batch Map resembles the standard k-means
algorithm outlined above. Unlike the standard k-means, however, it imposes a topological
order onto the final clustering. In particular, Kohonen suggested starting with a larger
topological neighborhood and gradually decreasing its size during the iterative learning
process. In the last iterations, the neighborhood of map unit j may even solely contain the
unit j to ensure stable reference vectors. In this case, the final iterations are equivalent
to the standard k-means algorithm.

The Batch Map algorithm is able to deal with real-valued features and capable of
executing in application mode. Similar to the bisecting k-means and its centroid-based
classifier described above, Batch Map allows for utilizing a classifier based on the near-
est reference vector of new input vectors. Analogous to the bisecting k-means, the results
output by Batch Map can easily be processed to apply the DIAsDEM cluster quality
criteria. Due to the topological ordering of map units in a two-dimensional array, the in-
terpretability is undoubtedly improved because the graphical result map facilitates deeper
insights into the discovered classification knowledge. Like the bisecting k-means, Batch
Map is also sensitive to noisy input vectors per se, but this algorithm can be extended to
deal with outliers (e.g., cf. Larsen and Aone, 1999, p. 18).

According to Vesanto and Alhoniemi (2000, p. 589), the standard SOM scales linearly
with the number of input vectors and quadratically with the number of map units. Hence,
training huge maps can be very time consuming. However, Kohonen (2001, p. 312) noticed
that Batch Map“has the advantage of being approximately an order of magnitude faster
than the standard SOM.” Since we do not strive to train especially huge maps, Batch
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Map is thus considered scalable for our KDT process. In addition, the standard SOM
algorithm and Batch Map were frequently employed to cluster textual data. Using both
algorithms, Kohonen (2001, pp. 296–299) processed 6,840,568 English patent abstracts to
construct a map comprising 1,002,240 units. Schweighofer et al. (2001), Rauber and Merkl
(2003), Chen et al. (2003), and Lagus et al. (2004) presented other relevant applications
of the Self-Organizing Map.

SNN Clustering Ertöz et al. (2003, 2004) proposed a novel clustering technique capable
of finding clusters of different sizes, shapes, and densities in high-dimensional, noisy data
sets. Since this method is based on the shared nearest neighbor clustering algorithm
presented by Jarvis and Patrick (1973), we briefly motivate the concept of shared nearest
neighbors and outline the fundamental algorithm. Thereafter, we introduce the new
approach to shared nearest neighbor, or abbreviated SNN, clustering.

Ertöz et al. (2003) argued that the commonly used proximity measures introduced in
Subsection 4.3.1 do not work well in high-dimensional, sparse data sets representing, for
example, text documents. On average, the similarity between any two vectors in these
kinds of data sets is typically low. Beyer et al. (1999) explored the effect of dimensionality
on the nearest neighbor problem. As the dimensionality increases, Beyer et al. showed
that the distance from any vector to its nearest vector approaches the distance to its
farthest vector under a broad set of conditions. This effect may occur for as few as 10–
15 dimensions. Using a well-known text classification archive and the cosine similarity,
Ertöz et al. (2004, p. 88) demonstrated that “a document’s closest neighbor actually
belongs to a different class 20% of the time.” To alleviate the problems associated with
direct proximity computations, Ertöz et al. (2003) advocated the concept of shared nearest
neighbors. More specifically, the similarity between any two vectors is defined on the basis
of nearest neighbors shared by them. If two vectors have many common nearest neighbors,
the similarity between them is ‘confirmed’ and thus more ‘reliable’ than directly computed
proximity indices.

Jarvis and Patrick (1973, pp. 1026–1027) proposed a shared nearest neighbor approach
to discovering non-globular clusters. Given a proximity measure, the size of the nearest
neighbor list k ∈ N, a similarity threshold kt ∈ N, kt ≤ k, and a data set comprising
n vectors xi ∈ R

m (n,m ∈ N, n > k, and i = 1, 2, . . . , n), this clustering algorithm
starts by determining the k nearest neighbors for each vector. Subsequently, two vectors
are assigned to the same cluster if (i) they are contained in each other’s list of k nearest
neighbors and (ii) have at least kt nearest neighbors in common. The first condition avoids
combining a small, relatively isolated group of vectors with a highly dense cluster.

To overcome a few limitations (see Ertöz et al., 2004, p. 89), the authors extended the
Jarvis-Patrick method and proposed a novel SNN clustering algorithm. This technique
utilizes the shared nearest neighbor approach to effectively process high-dimensional data
sets and additionally uses representative vectors, so-called topic points, to find clusters of
differing sizes and shapes. Given a proximity measure, the data set specified above, the
size of the nearest neighbor list k ∈ N, and five parameters described below, the SNN
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clustering algorithm is defined as follows (Ertöz et al., 2004, pp. 89–90):

1. Determine the list of k nearest neighbors for each vector i = 1, 2, . . . , n. Each
document is considered to be its 0th nearest neighbor.

2. Construct the shared nearest neighbor graph whose vertices represent vectors. This
graph has an edge between two vertices if the corresponding vectors have each
other in their nearest neighbor list. Each edge is annotated with the so-called link
strength defined as the number of nearest neighbors shared by the two vectors,
which correspond to the connected vertices. An edge is labeled ‘strong link’ if its
link strength is greater than a user-supplied strong link threshold tStrongLink ∈ N,
where tStrongLink < k + 1.

3. For each vector i, compute the connectivity conn(i) that is defined as the number
of strong links connected with the vertice of vector i in the SNN graph.

4. Discard each vector i as noise assigned to a specific outlier cluster if conn(i) < tNoise,
where tNoise ∈ N < n is a user-specified threshold. Outliers are not considered in
the clustering because they are similar to only a few of their neighbors.

5. Label each vector i as a representative vector if conn(i) > tTopic, where tTopic ∈ N is
a parameter such that tNoise < tTopic < n. Representative vectors, or topic points,
are similar to most of their neighbors and thus represent the neighborhood.

6. Assign any two vectors to the same cluster if (i) at least one vector is a representative
vector and (ii) they share a significant number of nearest neighbors. The second
condition requires that the link strength between the vertices that correspond to
the respective vectors in the SNN graph is greater than the user-supplied threshold
tMerge ∈ N, where tStrongLink < tMerge < k + 1.

7. Finally, consider non-noise vectors not assigned to any cluster yet: Assign these
vectors to the respective clusters if their associated vertices in the SNN graph are
connected to vertices of vectors assigned to a cluster with a link strength greater
than the user-supplied threshold tLabeling ∈ N, where tStrongLink < tLabeling < tMerge.

According to Ertöz et al. (2004, p. 90), this clustering algorithm is capable of discovering
“communities of documents, where a document in a community shares a certain fraction of
its neighbors with at least some number of neighbors.” The clustering method is based on
the idea that the probability of a document belonging to a different thematic class than its
nearest neighbor decreases as these two documents share an increasing number of common
neighbors. Ultimately, Ertöz et al. designed the new SNN clustering technique to find
topics occurring in text archives. Since the authors successfully conducted experiments
on real-world text collections, SNN clustering has a proven track of KDT applications.
Nevertheless, selecting appropriate parameters requires considerable expertise (e.g., the
size of nearest neighbor list; see Ertöz et al., 2004, pp. 90–91).

This method is able to process real-valued vectors and outputs results that are easily
interpretable and usable within the DIAsDEM framework. Unlike the other two algo-
rithms, SNN clustering is capable of dealing with noisy data. In contrast to the methods
introduced previously, however, SNN clustering cannot be considered highly scalable with

114



4.3 Clustering of Text Unit Vectors

respect to the size of the training data set. The run-time complexity of this clustering
algorithm scales quadratically with the number of input vectors because the similarity
matrix has to be computed to determine the nearest neighbor list for each vector (cf.
Ertöz et al., 2003). However, Ertöz et al. discussed several optimizations to process large
data sets efficiently. Finally, SNN clustering can be executed in application mode by
employing a k-nearest-neighbor classifier (cf. Weiss et al., 2005, pp. 88–89).

4.3.3 Ranking Clusters of Text Unit Vectors

Separating qualitatively acceptable clusters of text unit vectors from unacceptable ones
is a core step in our knowledge discovery process (cf. Section 3.3). When retrieving
information from an archive, ranking refers to sorting the result documents by decreasing
relevancy to present the most relevant texts on top of the often large result list (e.g.,
cf. Frakes and Baeza-Yates, 1992, pp. 363–392). In the DIAsDEM framework, however,
ranking denotes the process of sorting clusters of text unit vectors by decreasing quality.
Before we elaborate on our concept of iterative clustering, we therefore motivate and
introduce the fundamental DIAsDEM cluster quality criteria in this subsection.

Our Notion of Cluster Quality As discussed in Subsection 4.3.1, there exists a large
number of different relative cluster validity indices designed to assess the validity of a
clustering, which is the entirety of clusters output by an algorithm. Some of them, for
example the average silhouette width (Kaufman and Rousseeuw, 1990, pp. 83–88), are
also capable of evaluating the validity of individual clusters. Nevertheless, we intentionally
propose a novel, framework-specific set of cluster quality criteria for two purposes:

• Above all, the objectives of our DIAsDEM framework (cf. Section 3.2) impose
conditions on the quality of text unit clusters. By employing a specific knowledge
discovery approach, we strive to discover clusters that (i) represent semantic con-
cepts frequently occurring at the text unit level and that (ii) later serve as names
of semantic XML tags. Our main goal entails specific characteristics of qualita-
tively acceptable, or valid, clusters. These framework-specific properties, which are
described in detail below, cannot be guaranteed by generic cluster validity indices.

• In addition, the pattern discovery step of our KDT process adopts a plug-in ap-
proach and thus allows for the execution of various clustering algorithms if they
fulfill our selection criteria. As outlined in Subsection 4.3.1, however, the effectivity
of cluster validity assessment strongly depends on the appropriateness of assump-
tions underlying the applied criteria (e.g., convex clusters of similar sizes). Hence,
choosing a generic validity index is hardly appropriate for separating acceptable
from unacceptable clusters of text unit vectors in an algorithm-independent way.

To linguistically distinguish our framework-specific criteria from generic validity indices,
we intentionally use the term cluster quality criteria instead of cluster validity criteria. All
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Table 4.14: Sentences Assigned to Qualitatively Acceptable Text Unit Cluster 4 in Iter-
ation 1 (cf. News Items in Table 4.1 on Page 72)

Sentence of Reuters News Item Item Text Sentence

USA: VASCO says to sell consulting unit. 16106 ťE1 1

USA: Weyerhaeuser may sell subsidiary. 71177 ťE3 1

Timber giant Weyerhaeuser Company said Monday it may sell its mortgage
loan subsidiary, the Weyerhaeuser Mortgage Company.

71177 ťE3 2

USA: Miller to sell unit to Modtech. 78899 ťE4 1

USA: Helmerich to sell unit to Occidental. 17109 ťE2 2

USA: Zurn sells unit to Constellation Capitol. 115995 ťE5 1

Zurn Industries Inc said on Tuesday that it will sell its Zurn Mechanical
Power Transmission Group to Constellation Capital Partners LLC, for an
undisclosed amount.

115995 ťE5 2

automatically created suggestions concerning the quality of each cluster (i.e., acceptable
or unacceptable), which can later be approved or rejected by the domain expert, solely
depend on the DIAsDEM cluster quality criteria. Nevertheless, we explicitly encour-
age using appropriate relative cluster validity indices to find the optimal parameters of
the respective clustering method (e.g., number of clusters). This approach corresponds
to the ‘best practice’ of employing several relative validity indices when fine-tuning the
parameters of clustering algorithms (cf. Subsection 4.3.1).

What exactly characterizes a ‘good’ and thus qualitatively acceptable cluster of text unit
vectors? To achieve the objectives of our DIAsDEM framework, qualitatively acceptable
text unit clusters exhibit the following two characteristics:

1. An acceptable cluster represents only one coherent semantic concept. The corre-
sponding text units are assumed to feature a relatively homogeneous topic if their
content can be described by clearly predominating text unit descriptors that occur
in almost all text units assigned to the respective cluster.

2. An acceptable cluster comprises a sufficient, relatively large number of text unit
vectors. This requirement facilitates the discovery of frequently occurring and thus
more important semantic concepts at the text unit level. However, the concretely
required minimum cluster size depends on both the domain and the archive.

Since ‘good’ clusters are semi-automatically assigned content-descriptive labels in the
post-processing phase, the desired properties of qualitatively acceptable clusters are di-
rectly related to the purpose of their semantic labels. Cluster labels eventually serve as
names of semantic XML tags and elements of the domain-specific, concept-based XML
document type definition, respectively. As specified in Definition 1 on page 7, names of
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Table 4.15: Sentences Assigned to Qualitatively Unacceptable, Inhomogeneous Text Unit
Cluster 7 in Iteration 1 (cf. News Items in Table 4.1 on Page 72)

Sentence of Reuters News Item Item Text Sentence

Terms were not disclosed. 16106 ťE1 3

– Chicago newsdesk 312 408-8787 17109 ťE2 5

Terms were not disclosed. 78899 ťE4 4

Chicago Newsdesk 312-408-8787 78899 ťE4 5

–Chicago Newsdesk 312-408-8787 16106 ťE1 4

– New York Newsdesk +1 212 859 1610 115995 ťE5 5

Table 4.16: Sentence Assigned to Qualitatively Unacceptable, Small Text Unit Cluster 0
in Iteration 1 (cf. News Items in Table 4.1 on Page 72)

Sentence of Reuters News Item Item Text Sentence

Final settlement is scheduled for October 21, Miller said. 78899 ťE4 3

semantic XML tags convey the meaning of marked-up content by concisely describing
concepts that domain experts typically associate with annotated text units. The first
condition contributes towards semantically correct markup because only clusters repre-
senting homogeneous text units with clearly predominating descriptors are considered
acceptable. The second condition concerning the size of acceptable clusters ensures the
discovery of frequently recurring thematic concepts at the text unit level, which is one
goal of our framework (cf. Section 1.4). Ignoring infrequent concepts contributes towards
the effective usage of semantic markup in the form of concept-based XML DTD elements.

Prior to formalizing our notion of cluster quality, we illustrate it using the exemplary
text archive comprising five news stories ťE1 through ťE5, which altogether consists of
25 sentences (cf. Table 4.1 on page 72). For illustrative purposes, we refrain from dis-
cussing pre-processing issues (see Section 4.2), but emphasize that sentences correspond
to text units. Executing the bisecting k-means algorithm to discover k = 8 sentence clus-
ters in clustering iteration 1 returned, among others, three clusters listed in Tables 4.14
through 4.16. Visualized in Table 4.14, cluster 4 is qualitatively acceptable because it
represents one semantic concept at the sentence level (i.e., the theme ‘sale of business
unit’) and it is relatively large (i.e., seven of 25 sentences). Although containing six sen-
tences, cluster 7 shown in Table 4.15 is not acceptable since it lacks one coherent semantic
concept. Two of six sentences feature a different subject than the remaining ones. Since
cluster 0, which is visualized in Table 4.16, comprises merely one sentence, it is too small
and cannot be considered qualitatively acceptable as well.
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DIAsDEM Cluster Quality Criteria Within our knowledge discovery process, conven-
tional clustering algorithms satisfying certain requirements are employed to find clusters
of text unit vectors, which are in turn an integral part of intermediate text units (cf. Defi-
nition 18 on page 74). The details of our iterative approach to clustering are described in
the next subsection. At this point, we nevertheless anticipate that executing a clustering
algorithm results in modified iteration identifiers and cluster identifiers of the input inter-
mediate text units. To simplify the subsequent discussion, we define text unit clusters as
multi-sets7 of intermediate text units:

Definition 29 (Text Unit Cluster) Given intermediate text archive ā : IntTextArchive
and cluster identifier i ∈ N in clustering iteration t ∈ N, the multi-set Ct,i := {{ū | ū: Int-
TextUnit := ā.intTextUnit(j, kj) ∀ j = 1, 2, . . . , ā.size() ∀ kj = 1, 2, . . . , ā.intTextUnit-
LayerSize(j) s.t. ū.iteration() = t and ū.cluster() = i}} is a text unit cluster comprising all
intermediate text units in ā, whose text unit vectors are assigned to cluster i in clustering
iteration t.

Since archives may comprise duplicate intermediate text units, text unit clusters are
defined as multi-sets instead of sets. Text unit clusters may be empty, but each interme-
diate text unit in the corresponding archive is assigned to one text unit cluster at most.
One text unit cluster is encapsulated by the abstract data type TextUnitCluster (see
Appendix B.32 on page 236). The entirety of text unit clusters discovered in the same
clustering iteration constitute a text unit clustering, whose instances are encapsulated by
the ADT TextUnitClustering (see Appendix B.33 on page 238).

Definition 30 (Text Unit Clustering) Given intermediate text archive ā: IntTextArchive
and maximum cluster identifier imax ∈ N in clustering iteration t ∈ N, the set Ct :=
{Ct,1, Ct,2, . . . , Ct,imax

} is a text unit clustering comprising all imax text unit clusters Ct,i:
TextUnitCluster, where i = 1, 2, . . . , imax, discovered by a clustering algorithm in cluster-
ing iteration t.

Our quality criteria can only exploit characteristics of text unit clusters that are avail-
able in any case because they are independent of the concretely applied algorithm. Thus,
we deliberately limit the components of quality criteria and merely consider occurrences
of text unit descriptors in clusters and cluster sizes. In particular, our framework-specific
notion of descriptor support within a cluster is of great importance.

Definition 31 (Descriptor Support) Let Ct,i : TextUnitCluster denote text unit cluster
i ∈ N in clustering iteration t ∈ N. Let vD: ControlledVocabularyTerm denote a text unit

7Notation: Let the set X denote an arbitrary domain. A non-empty, finite multi-set Y := {{y1, y2, . . . ,
yi}} is a collection comprising i ∈ N unordered, not necessarily distinct elements y1, y2, . . . , yi such
that yj ∈ X, where j = 1, 2, . . . , i. Analogous to sets, the number of elements in multi-set Y (i.e., its
cardinality) is denoted by |Y| ∈ N, and an empty multi-set is denoted by ∅, such that |∅| = 0. Unlike
sets, however, multi-sets may comprise duplicate elements.
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4.3 Clustering of Text Unit Vectors

descriptor such that vD.isDescriptor() = true. The descriptor support Ct,i.descriptorSup-
port(vD) of text unit descriptor vD in non-empty text unit cluster Ct,i is defined as the
ratio of the number of intermediate text units in Ct,i whose processed text unit contains
the token vD.token() to the total number of intermediate text units in Ct,i. If text unit
cluster Ct,i is empty, Ct,i.descriptorSupport(vD) is defined to be zero.

A more formal, multi-set-based definition of descriptor support is given in the specifi-
cation of the ADT TextUnitCluster in Appendix B.32. Descriptor support takes values
in [0; 1]. The term descriptor support is inspired by the support of association rules in
a data set (cf. Agrawal et al., 1993, p. 208). Unlike the notion of support in association
rule discovery, however, the support of text unit descriptors is always cluster-specific.
The greater the fraction of intermediate text units in a cluster that comprise a certain
descriptor, the higher its support within the respective cluster. A text unit descriptor,
whose support is not very large in a cluster, is likely to be less significant for the purpose
of semantically describing the respective cluster content, and vice versa.

Considering the exemplary controlled vocabulary listed in Table 4.9 on page 97, text unit
descriptor ("unit", 9, true, null), which also represents the two non-descriptors ("organi-
zation", 20, false, 9) and ("subsidiary", 23, false, 9), occurs in six of seven text units as-
signed to the acceptable text unit cluster 4, which is shown in Table 4.14 on page 116, and
thus exhibits a high descriptor support of 6/7 therein. The descriptor ("stock", 1, true,
null) does not appear in any sentence and thus has the minimum support of 0 in clus-
ter 4. In the qualitatively unacceptable text unit cluster 7, as shown in Table 4.15 on
page 117, the descriptor ("unit", 9, true, null) occurs in two of six text units and has thus
a moderate support of 1/3 therein.

To assess the quality of text unit clusters for the ultimate purpose of semantic tagging,
highly supported descriptors are favored over less supported ones. In addition, noisy
descriptor occurrences are neglected to avoid a high influence of outliers onto the assess-
ment of cluster quality. To incorporate these requirements into the quality evaluation, we
introduce dominant and rare text unit descriptors defined as follows:

Definition 32 (Dominant Descriptor) Let Ct,i: TextUnitCluster denote text unit cluster
i ∈ N in clustering iteration t ∈ N. Text unit descriptor vD: ControlledVocabularyTerm,
where vD.isDescriptor() = true, is a dominant descriptor in text unit cluster Ct,i if its sup-
port Ct,i.descriptorSupport(vD) in Ct,i is greater than or equals the user-supplied dominant
descriptor threshold pDD ∈ [0; 1].

Definition 33 (Rare Descriptor) Let Ct,i : TextUnitCluster denote text unit cluster i ∈
N in clustering iteration t ∈ N. Text unit descriptor vD : ControlledVocabularyTerm,
where vD.isDescriptor() = true, is a rare descriptor in text unit cluster Ct,i if its support
Ct,i.descriptorSupport(vD) in Ct,i is less than or equals the user-supplied rare descriptor
threshold pRD ∈ [0; 1].

The ADT TextUnitCluster provides two operations that check whether a given text
unit descriptor is dominant and rare, respectively. It must be stressed that choosing

119



4 DIAsDEM Knowledge Discovery Process

appropriate parameter values for pDD and pRD depends on the application domain and
on characteristics of the text archive. For typical domain-specific document collections,
appropriate settings are pRD ∈ [0.005; 0.020] and pDD ∈ [0.80; 0.95] such that pRD ≪ pDD.
For the exemplary controlled vocabulary listed in Table 4.9 on page 97, pDD = 0.80, and
pRD = 0.01, the acceptable text unit cluster 4, which is shown in Table 4.14, contains
only dominant descriptors, namely, ("sale", 8, true, null) occurring in all sentences of
this cluster and ("unit", 9, true, null) exhibiting a high descriptor support of 6/7 therein.
Other text unit descriptors do not appear in sentences assigned to this text unit cluster.
Our example text archive is too small to illustrate rarely supported descriptors.

Having specified dominant and rare descriptors, we proceed by defining three proper-
ties of text unit clusters that are the building blocks of our DIAsDEM quality criteria.
As mentioned above, a qualitatively acceptable cluster represents one coherent seman-
tic concept and contains a sufficient, relatively large number of text units. The former
requirement is satisfied by putting constraints on both descriptor coverage and descrip-
tor dominance whereas the latter requirement is solely related to the cluster size. These
framework-specific characteristics of text unit clusters remain to be introduced:

Definition 34 (Descriptor Coverage) Let Ct,i: TextUnitCluster denote text unit cluster
i ∈ N in clustering iteration t ∈ N, and let V: ControlledVocabulary denote a controlled
vocabulary, where V.numberOfDescriptors() > 0. Given a user-supplied rare descriptor
threshold pRD ∈ [0; 1], the descriptor coverage Ct,i.descriptorCoverage(V, pRD) of text unit
cluster Ct,i is the ratio of the number of distinct, non-rare descriptors occurring in inter-
mediate text units of Ct,i to the total number of text unit descriptors in V.

Descriptor coverage measures the proportion of text unit descriptors in the controlled
vocabulary that is covered by, or occurs in, text units assigned to a specific cluster. How-
ever, only non-rare descriptors that have a descriptor support greater than the specified
rare descriptor threshold are taken into account to eliminate a possible bias introduced by
outliers. Qualitatively acceptable clusters tend to have a lower descriptor coverage than
unacceptable ones because they feature only one semantic theme. Text unit clusters with
a very high descriptor coverage are more likely to be less useful ‘garbage clusters’ that
comprise text units featuring a variety of different themes.

Definition 35 (Descriptor Dominance) Let Ct,i: TextUnitCluster denote text unit clus-
ter i ∈ N in clustering iteration t ∈ N, and let V: ControlledVocabulary denote a con-
trolled vocabulary, where V.numberOfDescriptors() > 0. Given a user-supplied dominant
descriptor threshold pDD ∈ [0; 1] and a rare descriptor threshold pRD ∈ [0; 1], the descrip-
tor dominance Ct,i.descriptorDominance(V, pRD, pDD) of text unit cluster Ct,i is the ratio
of the number of distinct, dominant descriptors occurring in intermediate text units of
Ct,i to the number of distinct, non-rare descriptors occurring in intermediate text units of
Ct,i if Ct,i.descriptorCoverage(V, pRD) > 0. Otherwise, the descriptor dominance of Ct,i

is defined to be zero.
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The content of qualitatively acceptable clusters can be described by a few predominating
text unit descriptors. To this end, descriptor dominance measures the proportion of
dominant descriptors within one cluster. Again, rare descriptors are not considered at all
when computing the descriptor dominance of a text unit cluster. The quality of text unit
clusters increases as their respective descriptor dominance increases. Since the content of
qualitatively acceptable clusters is characterized by clearly dominating descriptors, they
tend to have a higher descriptor dominance than unacceptable clusters.

Definition 36 (Cluster Size) Let Ct,i: TextUnitCluster denote text unit cluster i ∈ N in
clustering iteration t ∈ N. The cluster size Ct,i.size() of text unit cluster Ct,i is the total
number of intermediate text units assigned to Ct,i.

The size of text unit clusters, which is occasionally referred to as cluster cardinality,
cannot be neglected because qualitatively acceptable clusters represent frequently occur-
ring, more ‘important’ semantic concepts. Therefore, qualitatively acceptable clusters
must be large enough to represent frequently featured subjects of the application domain.
Nevertheless, less frequently occurring topics of great importance have to be discovered as
well without putting too much emphasis on topical outliers. In general, a greater cluster
size is preferred over a smaller one when discovering semantic concepts.

After introducing three fundamental characteristics of text unit clusters separately, we
finally bring them together and define our notion of cluster quality:

Definition 37 (Qualitatively Acceptable Cluster) Let Ct,i: TextUnitCluster denote text
unit cluster i ∈ N in clustering iteration t ∈ N, and let V: ControlledVocabulary denote
a controlled vocabulary, where V.numberOfDescriptors() > 0. Given the user-supplied

• dominant descriptor threshold pDD ∈ [0; 1],
• rare descriptor threshold pRD ∈ [0; 1], where pRD ≪ pDD,
• maximum descriptor coverage pmaxDC ∈ [0; 1],
• minimum descriptor dominance pminDD ∈ [0; 1], and
• minimum cluster size pminCS ∈ N,

text unit cluster Ct,i is qualitatively acceptable if

1. Ct,i.descriptorCoverage(V, pRD) ≤ pmaxDC,
2. Ct,i.descriptorDominance(V, pRD, pDD) ≥ pminDD, and
3. Ct,i.size() ≥ pminCS.

Together, the DIAsDEM cluster quality criteria 1 and 2 facilitate the discovery of
homogeneous clusters that represent only one semantic concept. In addition, DIAsDEM
cluster quality criterion 3 ensures that acceptable clusters are sufficiently large. By com-
bining three criteria, we put our notion of cluster quality into practice. Besides the
dominant and the rare descriptor threshold introduced above, three additional parameter
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thresholds have to be carefully chosen by the KDT expert. We recognize that setting ap-
propriate values for maximum descriptor coverage, minimum descriptor dominance, and
minimum cluster size requires adequate domain insight. However, the apparent diver-
sity of existing application domains and text archives necessitates our parameter-based
definition of cluster quality.

Any text unit cluster that does not meet these three criteria is referred to as a qual-
itatively unacceptable cluster. The abstract data type TextUnitCluster provides an op-
eration that determines whether the instantiated cluster is qualitatively acceptable. For
notational convenience, the abstract data type ClusterQualityCriteria (see Appendix B.36
on page 241) encapsulates all five DIAsDEM cluster quality thresholds introduced in
Definition 37. Although Definition 37 enables a clear distinction between acceptable and
unacceptable clusters, it does not support the ranking of text unit clusters by decreasing
quality. Since a ranking facilitates the cluster inspection by domain experts, we addition-
ally define a real-valued quality index that can be computed for all clusters.

Definition 38 (Cluster Quality Index) Let Ct,i : TextUnitCluster denote text unit clus-
ter i ∈ N in clustering iteration t ∈ N, which is an element of the text unit cluster-
ing Ct : TextUnitClustering, where Ct.numberOfIntTextUnits() > 0, and let V : Con-
trolledVocabulary denote a controlled vocabulary. Given a user-supplied dominant de-
scriptor threshold pDD ∈ [0; 1] and a rare descriptor threshold pRD ∈ [0; 1], the cluster
quality index Ct,i.qualityIndex(V, pRD, pDD, Ct) of text unit cluster Ct,i is defined as

1/3 · (1 − Ct,i.descriptorCoverage(V, pRD)) +
1/3 · Ct,i.descriptorDominance(V, pRD, pDD) +
1/3 · Ct,i.size()/Ct.numberOfIntTextUnits()

if Ct,i.descriptorCoverage(V, wpRD) > 0. Otherwise, the cluster quality index is defined
as 1/3 · Ct,i.size()/Ct.numberOfIntTextUnits().

The operation numberOfIntTextUnits() of ADT TextUnitClustering returns the total
number of intermediate text units contained in the entire clustering. It is required to com-
pute the relative, [0; 1]-bound size of a cluster within its text unit clustering. Our cluster
quality index takes values in [0; 1] such that greater values indicate a higher cluster quality,
and vice versa. In accordance with our notion of cluster quality, this index is positively
correlated with descriptor dominance and relative size of the cluster. Furthermore, it is
negatively correlated with descriptor coverage of the respective cluster.

Finding semantically homogeneous clusters that feature exactly one concept can be
trivially achieved by assigning each text unit to its own cluster. Conversely, the largest
cluster to be discovered comprises all text units. To offset the disadvantages associated
with these limit cases, our cluster quality index gives equal weight to the individual effects
of all three criteria. Thereby, we intentionally favor homogeneity of clusters, which is
measured by descriptor dominance and descriptor coverage, over cluster size. Combining
three criteria measured on different scales, however, entails limitations on interpreting
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Table 4.17: Text Unit Descriptors Occurring in Qualitatively Acceptable Text Unit Clus-
ter 4 in Iteration 1 (cf. Table 4.14 on Page 116)

Text Unit Descriptor Descriptor Support Text Unit Descriptor Descriptor Support

"sale" 7/7 = 1.000 "unit" 6/7 ≈ 0.857

Table 4.18: Text Unit Descriptors Occurring in Qualitatively Unacceptable, Inhomoge-
neous Text Unit Cluster 7 in Iteration 1 (cf. Table 4.15 on Page 117)

Text Unit Descriptor Descriptor Support Text Unit Descriptor Descriptor Support

place 4/6 ≈ 0.667 "Newsdesk" 4/6 ≈ 0.667
"not" 2/6 ≈ 0.333 "disclose" 2/6 ≈ 0.333
"term/s:agreement" 2/6 ≈ 0.333

concrete index values. Nevertheless, our cluster quality index allows for the comparison
of different text unit clusters with respect to their quality.

In Subsection 4.3.1, we have emphasized the importance of relative cluster validity
indices for comparing different clusterings of the same data set. To facilitate, for example,
searching for the optimal number of text unit clusters in a data set, we finally introduce
a relative cluster quality criterion at the text unit clustering level.

Definition 39 (Clustering Quality Index) Let Ct : TextUnitClustering denote text unit
clustering in clustering iteration t ∈ N, where Ct.numberOfIntTextUnits() > 0 and
imax ∈ N is the maximum cluster identifier, and let V: ControlledVocabulary denote a
controlled vocabulary. Given the user-supplied dominant descriptor threshold pDD ∈ [0; 1]
and rare descriptor threshold pRD ∈ [0; 1], the quality index Ct.qualityIndex(V, pRD, pDD)
of text unit clustering Ct is defined as 1/Ct.numberOfIntTextUnits() ·

∑imax

j=1 Ct,j.size() ·
Ct,j.qualityIndex(V, pRD, pDD, Ct).

Taking values in the interval [0; 1], our clustering quality index equals the weighted
average quality index of its text unit clusters. Since a greater value indicates a higher
average cluster quality, this relative cluster quality index can be used to compare clus-
terings created by different algorithms and/or different parameters. However, comparing
different values of our clustering quality index is only meaningful if they all characterize
a text unit clustering that has been discovered (i) in the same intermediate text archive,
(ii) in the identical KDT process iteration, and (iii) by employing the same controlled
vocabulary. The ADT TextUnitClustering provides an operation that returns the quality
index of instantiated text unit clusterings.

Tables 4.17 through 4.19 illustrate our concept of cluster quality by again referring to
the small example text archive and its text unit clustering in iteration 1. In particu-
lar, Table 4.17 and Table 4.18 list all text unit descriptors that occur in the focal text
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Table 4.19: Text Unit Clustering after Executing the Bisecting 8-Means in Iteration 1

Cluster Cluster Quality Qualitatively Descriptor Descriptor Cluster See
Rank Number Index Acceptable? Coverage Dominance Size Table(s)

1 4 0.709 Yes 2/13 ≈ 0.154 2/2 = 1.000 7 4.14, 4.17
2 6 0.629 No 2/13 ≈ 0.154 2/2 = 1.000 1
3 5 0.603 No 3/13 ≈ 0.231 3/3 = 1.000 1
4 1 0.577 No 4/13 ≈ 0.308 4/4 = 1.000 1
5 2 0.338 No 5/13 ≈ 0.385 1/5 = 0.200 5
6 3 0.296 No 3/13 ≈ 0.231 0/3 = 0.000 3
7 7 0.285 No 5/13 ≈ 0.385 0/5 = 0.000 6 4.15, 4.18
8 0 0.013 No 0/13 = 0.000 (0/0) 0.000 1 4.16

unit cluster along with their cluster-specific descriptor support. The unacceptable, small
cluster visualized in Table 4.16 does not comprise any descriptor at all. The complete
text unit clustering obtained by executing the bisecting k-means algorithm is illustrated
in Table 4.19. All eight text unit clusters are ranked by decreasing quality index. For
each cluster, the cluster quality criteria are listed along with automatically generated
cluster quality decisions. This text unit clustering contains only one acceptable and seven
unacceptable text unit clusters based on the following thresholds: dominant descriptor
threshold pDD = 0.8, rare descriptor threshold pRD = 0.01, maximum descriptor coverage
pmacDC = 0.4, minimum descriptor dominance pminDD = 0.6, and minimum cluster size
pminCS = 4. Cluster 7, shown in Tables 4.15 and 4.18, for example, has a high descriptor
coverage of approx. 38.5% and none of its five appearing descriptors is dominant, which
results in the minimum descriptor coverage of zero. Due to its low quality index of 0.285,
this unacceptable cluster is ranked second worst in the first clustering iteration.

4.3.4 Iterative Clustering of Text Unit Vectors

As coarsely outlined in Section 3.3, a clustering algorithm is repeatedly invoked during the
DIAsDEM knowledge discovery process. Combined with our framework-specific cluster
quality criteria to distinguish acceptable from unacceptable clusters, this approach to
pattern discovery is referred to as iterative clustering. In the remainder of this subsection,
we explain the concept of iterative clustering in detail, give an illustrative example, and
describe the effect of iterative clustering on the KDT process flow.

Our Notion of Iterative Clustering The ‘grouping objects’ step of the typical clustering
process introduced in Subsection 4.3.1 aims at finding clusters that make explicit the valid
structure inherent in the data. Despite the common practice of exploratively executing
several algorithms and/or using different parameters to find the ‘best’ clustering, the
finally selected combination of clustering method and its parameters is typically executed
only once. In most domains it is sufficient to directly find one clustering of the entire
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4.3 Clustering of Text Unit Vectors

input data set, such as a market segmentation or a taxonomy of astronomical objects.
Instead of pursuing this conventional approach to clustering, we advocate applying a

slightly different procedure, which we refer to as iterative clustering, for two reasons:

• The DIAsDEM knowledge discovery process shall discover both specific and general
concepts that occur in the training archive. To that end, we need to find text unit
clusters that represent semantic concepts as specific as possible, without missing
more general concepts at the same time. Ultimately, semantic XML markup shall
characterize the annotated content properly and as precisely as possible.

• Our framework-specific KDT process shall discover more frequent as well as less
frequent semantic concepts as long as a domain-specific minimum frequency of oc-
currence is satisfied. In particular, less frequently appearing themes shall not be
suppressed by more frequent ones because they may also convey important topics.

The framework-specific notion of iterative clustering is designed to meet the above men-
tioned requirements in conjunction with our DIAsDEM cluster quality criteria. Unlike
internal iterations performed by several clustering algorithms prior to converging towards
the final result (e.g., bisecting k-means; cf. Subsection 4.3.2), we advocate performing
clustering iterations outside the employed algorithm. To that end, a clustering algorithm,
but not necessarily the same one across all iterations, is repeatedly executed with reduced
input data, modified parameters, and/or cluster quality criteria.

Figure 4.2 highlights all components of the DIAsDEM knowledge discovery process
that are associated with our notion of iterative clustering. Each clustering iteration con-
sists of the following three mandatory steps 1 through 3 and the optional step 4:

1. Mapping text units onto text unit vectors: Although converting fully pre-processed
text units into real-valued vectors is clearly a data pre-processing step, it is never-
theless an important component of our iterative clustering approach. In iteration 1,
all text units in the training archive are mapped onto text unit vectors, as described
in Subsection 4.2.5. Subsequent to the initial clustering iteration, only text units as-
signed to qualitatively unacceptable clusters in the preceding iteration are mapped
onto vectors. Due to this selective mapping, the number of text unit vectors to be
clustered is typically reduced in each iteration.

2. Selecting, parameterizing, and executing a clustering algorithm: Having created an
iteration-specific input data set, the KDT expert carefully chooses an appropriate
clustering technique and its parameters (cf. Subsection 4.3.2). When parameterizing
a selected clustering algorithm, the expert takes into account the current progress
of the knowledge discovery process, which is measured by the fraction of text units
already assigned to qualitatively acceptable clusters. If possible, the algorithm is at
first parameterized to discover frequently occurring and/or very specific thematic
concepts. As the number of completed iterations increases, parameters are modified
to find more general and/or less frequent semantic concepts as well. The necessary
parameter modifications depend on the chosen algorithm.
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Figure 4.2: Iterative Clustering in the DIAsDEM Knowledge Discovery Process

3. Automatic ranking of the resulting text unit clusters: Based on DIAsDEM cluster
quality criteria specified by the KDT expert, all text unit clusters output by the
executed algorithm are partitioned into qualitatively acceptable and unacceptable
clusters. Within each category, text unit clusters are ranked by decreasing quality
index (cf. Subsection 4.3.3) to facilitate an efficient inspection by human experts. As
the number of completed iterations increases, qualitatively acceptable clusters tend
to be smaller and less homogeneous. Hence, the KDT expert gradually relaxes the
thresholds for acceptable clusters by modifying the iteration-specific cluster quality
criteria (i.e., dominant descriptor threshold, rare descriptor threshold, maximum
descriptor coverage, minimum descriptor dominance, and/or minimum cluster size).

4. Interactive screening of the cluster ranking: As emphasized in Section 3.3, the en-
tire knowledge discovery process is interactive, or semi-automated, to ensure a high
quality of semantic markup. In particular, we highly recommend checking the au-
tomatically derived cluster quality assessments. Although the DIAsDEM cluster
quality criteria are carefully designed to distinguish ‘good’ clusters from ‘bad’ ones,
they cannot guarantee completely error-free assessments due to the complexity and
diversity of written language. Thus, a domain expert is asked to approve or reject
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automatically generated cluster quality assessments.

Subsequent to the final human cluster validation, all text units assigned to acceptable
clusters are put aside for semantic labeling in the post-processing step. By contrast,
text units assigned to the remaining, unacceptable clusters constitute the input to the
next clustering iteration. If no qualitatively acceptable text unit cluster is discovered at
all, the iterative clustering procedure is discontinued, and the post-processing phase of
our knowledge discovery process starts. Otherwise, iterative clustering is continued until
a stopping criterion specified by the domain or KDT expert is satisfied. Conceivable
stopping criteria are, for example, a minimum number of remaining text units or the
non-existing subjective interestingness, or relevance, of all/most semantic concepts that
are represented by qualitatively acceptable text unit clusters in the current iteration.

To achieve a high quality of markup, our knowledge discovery process is inherently
interactive and offers various possibilities for well-directed human intervention. Basically,
the expert may select a different clustering algorithm in each iteration. In earlier itera-
tions, for example, SNN clustering (Ertöz et al., 2004) is appropriate to discover highly
specific thematic clusters while ignoring thematic outliers. In later iterations, the bisecting
k-means (Steinbach et al., 2000) is, for instance, applicable to find a small, predetermined
number of clusters that are more likely to represent less specific thematic concepts. When
executing the same algorithm in multiple iterations, the KDT expert may furthermore
relax its parameters. For example, gradually reducing the size of a Self-Organizing Map
(SOM; cf. Kohonen, 2001) typically results in discovering less specific semantic concepts.
Moreover, the human expert may step by step reduce the requirements for acceptable
text unit clusters in terms of the applied DIAsDEM cluster quality criteria. Finally,
mapping text units onto real-valued vectors involves decisions concerning the weighting of
text unit descriptors (cf. Subsection 4.2.5), which may also be adjusted between different
iterations. When employing the weighting scheme suggested in Subsection 4.2.5, however,
the collection frequency components of descriptor weights typically vary without human
intervention due to the step-by-step reduction of the collection size from one iteration to
the other. The discrepancy between the desire to automatically discover semantic con-
cepts on the one side and the need to incorporate human domain, process, and algorithm
knowledge on the other is discussed in Section 4.6.

We present and discuss the successful application of our DIAsDEM framework in
two real-world case studies in Chapter 6. Despite the achieved success in semantically
marking up text documents, two particularities of the iterative clustering approach have
to be taken into account when employing our framework. Firstly, one semantic concept
might be represented by several text unit clusters. This particularity is mostly caused by
the concretely utilized clustering algorithms and their parameter settings. Additionally,
it is conceivable that one semantic concept is represented by several combinations of
descriptors. While important, a careful parameterization of clustering algorithms thus
cannot entirely prevent this first effect. Secondly, text unit vectors cannot be assigned
to qualitatively acceptable clusters discovered in any preceding iteration. Due to this
particularity, the first effect may of course occur such that the same semantic concept is
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Figure 4.3: Illustration of Pattern Discovery in Four Clustering Iterations

spread over multiple clusters across different iterations. Furthermore, text unit vectors
may be considered as outliers although they represent a semantic concept associated with
an acceptable cluster from a preceding iteration. Again, the second effect can be reduced
by executing suitable and appropriately parameterized clustering techniques.

The fundamental idea of iterative clustering, namely, the repeated execution of a clus-
tering algorithm on a gradually and interactively reduced data set, resembles the core
idea of Scatter/Gather (Cutting et al., 1992). Unlike a focused, query-based search
for narrowly specified documents, this cluster-based information retrieval system is de-
signed to facilitate an open-ended exploration of large document collections in iterative
and interactive browsing sessions. Each iteration comprises a so-called scatter step, in
which documents are clustered, and a so-called gather step, in which the user selects in-
teresting document clusters for further, detailed analysis. Initially, the entire archive is
segmented, or scattered. Thereafter, only documents assigned to interesting, manually
selected clusters form a new sub-collection to be segmented. Hence, Scatter/Gather
collects all documents considered interesting by the user and re-scatters them to form new
groups of similar documents. In contrast, our DIAsDEM framework groups structural
text units instead of entire documents. Above all, however, we advocate ‘gathering’ and
‘re-scattering’ text units assigned to unacceptable, uninteresting clusters. Members of
acceptable clusters are put aside for semantic labeling in DIAsDEM whereas documents
in less interesting clusters are ignored in the following Scatter/Gather iterations.

An Example Our iterative clustering approach to pattern discovery is illustrated using
the small example text archive of news stories ťE1 through ťE5, which altogether con-
tain 25 sentences (cf. Table 4.1 on page 72). We refrain from discussing the completed
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4.3 Clustering of Text Unit Vectors

Table 4.20: Summary of Pattern Discovery in Four Clustering Iterations

Cluster- Input Parameter Dominant Rare Maximum Minimum Minimum
ing Iter- Text of Bisecting Descriptor Descriptor Descriptor Descriptor Cluster

ation Units k-Means Threshold Threshold Coverage Dominance Size

1 25 k = 8 0.80 0.01 0.20 0.60 4
2 18 k = 7 0.80 0.01 0.30 0.40 2
3 10 k = 6 0.80 0.01 0.40 0.30 2
4 8 k = 5 0.80 0.01 0.50 0.20 2

Cluster- Number of Clusters (Number of Text Units Therein) after: Stop
ing Iter- Automated Ranking of Clusters Interactive Screening of Ranking Iterative

ation Acceptable Unacceptable Acceptable Unacceptable Clustering

1 1 (7) 7 (18) 1 (7) 7 (18) No
2 4 (10) 3 (8) 3 (8) 4 (10) No
3 3 (6) 3 (4) 1 (2) 5 (8) No
4 1 (2) 4 (6) 0 (0) 5 (8) Yes

pre-processing steps extensively described throughout Section 4.2. Figure 4.3 schemati-
cally depicts the pattern discovery phase, which comprises four clustering iterations. In
each iteration, (i) text units are mapped onto vectors using the weighting scheme sug-
gested in Subsection 4.2.5, (ii) the bisecting k-means algorithm (Steinbach et al., 2000)
is executed, (iii) the resulting clusters are automatically ranked to separate qualitatively
acceptable clusters from unacceptable ones, and (iv) a domain expert interactively checks
and corrects, if necessary, the automatically generated quality assessment.

Table 4.21: Sentences Assigned to Qualitatively Acceptable Text Unit Cluster 1 in Iter-
ation 2 (cf. News Items in Table 4.1 on Page 72)

Sentence of Reuters News Item Item Text Sentence

– Chicago newsdesk 312 408-8787 17109 ťE2 5

Chicago Newsdesk 312-408-8787 78899 ťE4 5

–Chicago Newsdesk 312-408-8787 16106 ťE1 4

– New York Newsdesk +1 212 859 1610 115995 ťE5 5

The bisecting k-means, which is used here in combination with cosine similarity, is a
suitable technique for our KDT process (cf. Subsection 4.3.2). This algorithm was chosen
for illustrative purposes because only one intuitive parameter needs to be set: the number
of desired clusters k. All relevant settings of four performed clustering iterations along
with their respective results are compiled in Table 4.20 on page 129.

To find less specific semantic concepts, the number k of clusters is reduced in each
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Table 4.22: Sentences Assigned to Qualitatively Acceptable Text Unit Cluster 3 in Iter-
ation 2 (cf. News Items in Table 4.1 on Page 72)

Sentence of Reuters News Item Item Text Sentence

Terms were not disclosed. 16106 ťE1 3

Terms were not disclosed. 78899 ťE4 4

Table 4.23: Sentences Assigned to Qualitatively Unacceptable, Inhomogeneous Text Unit
Cluster 2 in Iteration 2 (cf. News Items in Table 4.1 on Page 72)

Sentence of Reuters News Item Item Text Sentence

The company said it has retained the New York investment banking firm
of Goldman, Sachs & Co. to explore its strategic options with the 1,500-
employee unit.

71177 ťE3 3

The mortgage unit, which is headquartered in Woodland Hills, Calif., orig-
inated $2.1 billion in residential first mortgages in the eight months that
ended Aug. 31.

71177 ťE3 4

iteration. Analogously, the DIAsDEM cluster quality criteria are gradually relaxed.
After four iterations, 17 of 25 sentences are assigned to four qualitatively acceptable
clusters. The only ‘good’, highly specific text unit cluster discovered in the first iteration
is visualized in Table 4.14 on page 116. Recall the unacceptable, rather inhomogeneous
cluster found in iteration 1 and listed in Table 4.15 on page 117. In the second iteration,
this text unit cluster is split into two distinct, acceptable clusters featuring the semantic
concepts ‘editing newsdesk’ (see Table 4.21) and ‘nondisclosure of terms’ (see Table 4.22),
respectively. Furthermore, Table 4.23 illustrates a text unit cluster from iteration 2, which
is acceptable according to the automated ranking based on DIAsDEM cluster quality
criteria. Although the descriptors "unit" and place are truly dominant therein, both
sentences do not share a common, domain-specific semantic concept other than the trivial
theme ‘statement about a specified business unit’. Since these two sentences are assigned
to the same cluster in iterations 2 through 4, the domain expert constantly rejects the
automatically generated, positive cluster quality assessment.

Effect on KDT Process Flow The iterative clustering phase of our knowledge discovery
process starts subsequent to the completed execution of the three algorithms Decompose-
AndTokenizeTextDocuments, ExtractNamedEntities, and LemmatizeAndDisambiguate-
Words in the pre-processing phase. Prior to describing an algorithm that encapsulates a
single clustering iteration, we introduce a few framework-specific abstract data types.

The pre-processing step of mapping text units onto vectors is considered a core step
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of iterative clustering. Although we have proposed a suitable weighting scheme for com-
mon text archives in Subsection 4.2.5, different types of archives may necessitate the
application of other weighting schemata. Therefore, we do not define one algorithm
for generating text unit vectors, but rather introduce the corresponding abstract data
type DescriptorWeightingScheme (see Appendix B.34 on page 239). Descriptor weight-
ing schemata typically consist of three components, some of which (e.g., the collection
frequency components) are computed once in the knowledge discovery phase and after-
wards retrieved for usage in the batch-oriented knowledge application phase. There-
fore, the ADT DescriptorWeightingScheme provides two different mapping operations as
well: createVectorsInDiscoveryMode(āT: IntTextArchive, V: ControlledVocabulary): Int-
TextArchive and createVectorsInApplicationMode(āA : IntTextArchive, V : Controlled-
Vocabulary): IntTextArchive. Both operations create text unit vectors for all intermediate
text units in the respective intermediate text archive that are not yet assigned to an ac-
ceptable cluster and whose semantic concept assumes the null value. If necessary, the
operation createVectorsInDiscoveryMode additionally computes and persistently stores
iteration-invariant weighting components for usage during knowledge application.

The DIAsDEM framework for semantic XML tagging incorporates a plug-in concept
for conventional clustering algorithms that satisfy the requirements introduced in Sub-
section 4.3.2. Due to the potentially large number of applicable clustering techniques,
we merely define the abstract data type ClusteringAlgorithm (see Appendix B.35 on
page 240) without elaborating on the intricacies of particular methods. Consequently,
instances of this ADT are only characterized by the respective clustering iteration num-
ber as well as two strings that contain the name and parameters, respectively, of the
algorithm to be executed. This abstract data type provides two main operations, namely,
executeInDiscoveryMode(āT: IntTextArchive): IntTextArchive and executeInApplication-
Mode(āA : IntTextArchive) : IntTextArchive. The former operation is executed in the
knowledge discovery phase. Its objective is to discover a new text unit clustering of all
text units in the training archive ā that are not yet assigned to an acceptable cluster
and whose semantic concept hence takes the null value. Subsequent to cluster discov-
ery, algorithm-specific cluster descriptions (e.g., cluster centroids; cf. Subsection 4.3.2)
are persistently stored by the respective ADT instance. The latter operation executes
the encapsulated algorithm in application mode. This mode utilizes existing cluster de-
scriptions for the purpose of assigning new text unit vectors to existing clusters in the
batch-oriented knowledge application phase.

Each clustering iteration is closely associated with the following, iteration-specific meta-
data: iteration number, parameterized descriptor weighting scheme, parameterized clus-
tering algorithm, DIAsDEM cluster quality criteria, and resulting text unit clustering.
Since these metadata items are required in the corresponding classification iteration of
the knowledge application phase, they have to be persistently stored for subsequent usage
as well. For example, the clustering algorithm is executed in application mode to assign
new text unit vectors to clusters discovered in a clustering iteration. In addition, the text
unit clustering encapsulates the final cluster quality decisions. To fulfill this requirement,
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Algorithm 4.4 PerformClusteringIteration (Outline)
Input: (ā: IntTextArchive, m: IterationMetadata)
Output: (ā: IntTextArchive, m: IterationMetadata)
1: ā := m.descriptorWeightingScheme().createVectorsInDiscoveryMode(ā)
2: ā := m.clusteringAlgorithm().executeInDiscoveryMode(ā)
3: Ct: TextUnitClustering := Ct.create(ā,m.iterationNumber(),

m.clusteringAlgorithm().maximumClusterIdentifier())
4: Ct.automatedRankingOfClusters(m)
5: Ct.interactiveScreeningOfClusterRanking(m)
6: // iteration-specific post-processing of discovered patterns: semantically label acceptable text
7: // unit clusters and update semantic concept of affected intermediate text units accordingly
8: m.setTextUnitClustering(Ct)

we introduce the abstract data type IterationMetadata (see Appendix B.37 on page 241).
This ADT is instantiated by specifying an iteration number, a parameterized descriptor
weighting scheme, a parameterized clustering algorithm, and DIAsDEM cluster qual-
ity criteria. Once discovered, an iteration-specific text unit clustering is added to the
corresponding instance of the abstract data type IterationMetadata.

Algorithm 4.4 represents one clustering iteration. This algorithm takes an intermediate
text archive and an instantiated iteration metadata container as input, performs one
clustering iteration as specified by the KDT expert when instantiating the metadata
container, and finally returns the modified input parameters. In lines 1 through 5 and 8,
all iteration-specific operations described in this subsection are performed by executing
ADT operations. Apart from the interactive screening, all operations in Algorithm 4.4
are automatically executed after the initial parameterization.

In the next section, we discuss the post-processing phase of our knowledge discovery
process in detail. In particular, the important issue of semi-automated cluster labeling is
introduced in Subsection 4.4.1. Analogous to creating text unit vectors by pre-processing
text units, semantic cluster labeling is a post-processing step in principle. However, as
indicated by lines 6 and 7 of algorithm PerformClusteringIteration, we nevertheless include
this important post-processing step directly in a DIAsDEM clustering iteration. Hence,
Algorithm 4.4 is extended accordingly in Subsection 4.4.1. Subsequent to interactively
screening ranked text unit clusters, qualitatively acceptable ones are semi-automatically
labeled and their text units are assigned the corresponding semantic concept.

4.4 Post-Processing of Discovered Patterns

In the generic KDT process outlined in Subsection 2.1.1, all discovered patterns are in-
terpreted and evaluated in the post-processing phase to eliminate uninteresting, useless,
and already known patterns. The remaining ones are considered to be knowledge, which
is finally applied to attain the initial objective. As indicated in Section 3.3, the post-
processing phase of our specific knowledge discovery process encompasses (i) the semi-
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automated semantic labeling of qualitatively acceptable clusters introduced in the next
subsection, (ii) the automated establishment of a domain-specific, concept-based XML
document type definition discussed in Subsection 4.4.2, as well as (iii) the transformation
of training texts into semantically tagged XML documents described in Subsection 4.4.3.

4.4.1 Recommending Semantic Cluster Labels

In the preceding section, we have concluded that discovered text unit clusters are parti-
tioned into qualitatively acceptable and unacceptable clusters in each clustering iteration.
As part of the post-processing of discovered patterns within each clustering iteration, ac-
ceptable text unit clusters are semi-automatically assigned a content-descriptive, semantic
label. In accordance with Definitions 1 and 6, a semantic cluster label concisely describes
the concept that domain experts typically associate with text units assigned to the respec-
tive cluster. To facilitate the creation of high-quality semantic markup, we intentionally
take a semi-automated approach to cluster labeling. More concretely, default cluster la-
bels are automatically derived for all acceptable clusters. Subsequently, label suggestions
are approved or rejected (i.e., corrected) by the domain expert.

We proceed by briefly reviewing relevant work on labeling clusters of text documents.
Subsequently, we introduce the DIAsDEM approach to suggesting content-descriptive
labels for text unit clusters, which is inspired by related work. We conclude this subsection
by outlining the effect of labeling acceptable clusters on the KDT process flow.

Related Work on Cluster Labeling In general, as Jarvis and Patrick (1973, p. 1029)
emphasized, “clustering cannot provide naming.” The authors clearly separated the task
of employing unsupervised learning to find clusters in a data set from assigning names to
clusters. The latter task involves attaching meaning to identified clusters and therefore
requires an external interpretation by human investigators who have contextual, domain-
specific knowledge. Automatic attempts at naming clusters thus cannot guarantee mean-
ingful results. This view apparently holds three decades later. According to Feldman and
Sanger (2007, p. 91), for example, “the problem is to give the user a meaningful cluster
label.” In this context, Sacco (2000, p. 475) argued that clustering methods are capable of
finding concepts in a corpus, but they cannot synthesize human-understandable concept
labels. Despite the variety of existing approaches to discovering concepts in texts, Stein
and Meyer zu Eissen (2004, p. 353) as well as Treeratpituk and Callan (2006, p. 278)
emphasized that less attention had been directed at adequately characterizing them in a
concise, content-descriptive, and human-comprehensible way.

Many techniques for labeling clusters of textual data exploit properties of specific clus-
tering algorithms or certain classes of algorithms. Karypis and Han (2000a) as well
as Hotho et al. (2003b), for instance, employed labeling methods that are restricted to
centroid-based clustering algorithms, like the bisecting k-means (Steinbach et al., 2000)
outlined in Subsection 4.3.2. Both groups of authors characterized clusters of text docu-
ments by the n ∈ N highest weighted terms in their centroids. Thereby, emphasis is placed
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on the ‘most important’ terms according to the clustering result. Obviously, this label-
ing method is highly influenced by the chosen term weighting scheme. This approach to
cluster labeling, however, does not output labels as created by humans, but rather creates
lists of important key words. Hotho et al. (2003b) acknowledged this disadvantage and
suggested utilizing an existing, domain-specific ontology (cf. Subsection 2.2.3) to explain
clustering results. This extension is not applicable in our DIAsDEM framework because
we do not require an existing ontology as input. For analogous reasons, cluster description
methods that require a priori given, formalized domain knowledge (e.g., see Jain et al.,
1999, pp. 290–292) are not applicable either.

Inferring meaningful descriptions of hierarchically clustered texts is another area of
research into cluster labeling. For example, Chakrabarti et al. (1998, p. 165), Glover et al.
(2002, 2003), as well as Treeratpituk and Callan (2006) presented techniques designed
to infer content characterizations and labels, respectively, for document clusters in a
hierarchy. As the DIAsDEM framework does not aim at discovering hierarchies of text
unit clusters, we refrain from discussing hierarchical cluster label inference in detail.

Another strain of research is focused on Self-Organizing Maps (cf. Kohonen, 2001), as
introduced in Subsection 4.3.2. For instance, the LabelSOM algorithm extracts fea-
tures from map units, or clusters, that best characterize the input data assigned to these
map units (Rauber, 1999; Rauber and Merkl, 2003). Analogous to centroid-based label-
ing methods, LabelSOM takes advantage of the reference vector associated with each
map unit. In contrast, LabelSOM does not extract terms that are assigned the high-
est weights in each centroid, but outputs terms shared by many documents in a cluster.
WEBSOM is a SOM-based document clustering method that reduces the dimensionality
of document vectors by means of random projection prior to training a map (see Kohonen,
2001, pp. 286–299). Due to the dimensionality reduction, reference vectors of map units
cannot be directly exploited as label clusters. In this context, Lagus and Kaski (1999) pre-
sented a WEBSOM-specific method for selecting cluster keywords. The authors argued
that good keywords characterize outstanding properties of the focal cluster in relation to
the rest of the document archive. Thus, Lagus and Kaski suggested a labeling technique
that exploits differences of term frequency distribution between the focal cluster and the
entire archive. Because this approach requires the computation of many relative term fre-
quencies, Azcarraga et al. (2004) proposed a similar, yet much faster, labeling algorithm
that takes advantage of the random projection method.

Many techniques that are independent of the concretely applied clustering algorithm
only take term frequencies into consideration. For example, Cody et al. (2002, pp. 702–
703) proposed a so-called category labeling algorithm that is solely based on the occurrence
of terms in clusters. To create a label, this method firstly concatenates all words occurring
in more than 90% of all documents using the character ‘&’. If no term appears in more
than 10% of the documents in a cluster, it is labeled ‘miscellaneous’. Otherwise, the
cluster label is a successively created, comma-separated list comprising the most frequent
terms. Popescul and Ungar (2000), however, warned of merely considering the cluster-
specific term frequency for labeling purposes. Although the list of most frequent words
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often reveals the high-level subject, it may fail to convey cluster-specific themes that best
differentiate between clusters. Often, the most frequent terms in a cluster are actually
meaningless, collection-specific stopwords (e.g., ‘compute’ in computer science abstracts)
that do not convey additional information about a cluster’s content.

According to Sanderson and Lawrie (2000, pp. 243–244), the classic approach to se-
lecting terms as components of cluster labels involves searching for ‘unusually frequent’
terms in each cluster. To that end, the authors suggested comparing the frequency of each
term’s occurrence with its frequency in the entire collection. Subsequent to ranking all
terms appearing in a cluster by decreasing comparison ratio, the top n ∈ N terms serve as
cluster labels. Strehl et al. (2000) took a slightly different approach by characterizing each
cluster with three descriptive and three discriminative terms. The former ones exhibit the
greatest term frequency in the respective cluster whereas the latter terms have the highest
frequency multiplier when compared to the average document in the collection. Kulkarni
and Pedersen (2005) extracted both descriptive labels defined analogously to Strehl et al.
and discriminating labels. The latter ones consist of descriptive terms that do not serve as
descriptive labels in any other document cluster. Analogously, Geraci et al. (2006) empha-
sized that the quality of cluster labels depends on their well-formedness, their descriptive
power, and their discriminative power.

Semantic Cluster Labeling in DIAsDEM Instead of generating truly meaningful labels
like the ones created by humans, existing approaches to automated cluster labeling typi-
cally extract terms from documents assigned to a cluster that altogether characterize its
content. This approach is also adopted in the DIAsDEM framework for semantic XML
tagging. Due to our plug-in concept for clustering algorithms, we cannot employ cluster
labeling techniques that are restricted to a certain clustering algorithm or a family thereof.
Hence, our KDT process encompasses an automated, frequency-based method of creating
default labels for qualitatively acceptable text unit clusters. To ensure a high quality
of semantic XML markup, however, we strongly recommend checking, and if necessary
correcting, all default cluster labels by a domain expert. Consequently, text unit clusters
are semantically labeled in a two-step process:

1. Automatic default labeling of acceptable clusters: Initially, all qualitatively accept-
able clusters are assigned a default label. To generate the default label for a text
unit cluster, all dominant descriptors occurring therein are identified, ordered by
decreasing descriptor dominance, concatenated using the underscore character "_",
and finally prefixed with "DEFAULT_". By utilizing dominant text unit descriptors
as content-descriptive terms, we again consider our framework-specific notion of
cluster quality introduced in Subsection 4.3.3. Since cluster labels serve as names
of semantic XML tags and elements of the concept-based XML DTD, respectively,
they are restricted to comprise a limited, standardized set of characters only (see
World Wide Web Consortium, 2000). Unlike some approaches to cluster labeling
discussed above, we intentionally refrain from using discriminative terms when la-
beling text unit clusters. Discriminative descriptors are neither determined nor
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Table 4.24: Summary of Semantic Cluster Labeling in Four Clustering Iterations

Cluster- Number of Automatically Final Custer Label See
ing Iter- Acceptable Created Default upon Completion of Table

ation Cluster Cluster Label Interactive Review

1 4 DEFAULT_sale_unit SaleOfBusinessUnit 4.14
2 1 DEFAULT_Newsdesk_place EditingNewsdesk 4.21
2 3 DEFAULT_termsagreement_not_disclose NondisclosureOfTerms 4.22
2 6 DEFAULT_expect_closing ExpectedDealClosing 4.25
3 5 DEFAULT_unit_sale_agreement AgreementOnUnitSale 4.26

utilized in the labeling step because our DIAsDEM knowledge discovery process
aims at finding frequently recurring thematic concepts. The most discriminative
terms, however, are often “rather obscure words” (Popescul and Ungar, 2000, p. 1)
and thus typically provide limited insight into the prevailing thematic subject of
a text unit cluster. Furthermore, structural text units are typically smaller than
entire documents addressed by the work discussed above. Clusters of smaller text
units tend to be thematically more focused than clusters of larger documents.

2. Interactive review of default cluster labels: Ultimately, cluster labels serve as names
of semantic XML tags and elements of the concept-based XML DTD, respectively, to
reap the benefits of semantic markup (cf. Section 1.3). Merely concatenating domi-
nant descriptors may provide an accurate, coarse, and high-level content description,
but descriptor lists rarely facilitate a meaningful, domain-specific, and above all us-
able markup of text units. To overcome this limitation, we strongly recommend an
interactive screening of automatically generated cluster labels. The domain expert
is asked to inspect text units assigned to a cluster, or a sample thereof, in combina-
tion with cluster-specific frequency statistics of both text unit descriptors and terms
not covered by the corresponding controlled vocabulary. Supported by this auto-
matically created cluster visualization, the human expert is capable of efficiently
correcting default cluster labels, if necessary. This interactive process involves, but
is not limited to, (i) rearranging dominant text unit descriptors in another order,
(ii) substituting dominant descriptors with more general terms, (iii) adding words
to labels, which are neither descriptors nor non-descriptors, that frequently appear
in a cluster, and/or (iv) adding coordinating conjunctions and prepositions, such as
‘of’ or ‘by’. Upon completion of this interactive review, cluster labels explicitly con-
vey informal metadata about the meaning of the respective text units by concisely
describing concepts that domain experts typically associate with these text units
(cf. Definitions 1 and 6).

Table 4.24 illustrates our framework-specific concept of semantic cluster labeling on the
basis of the running example. Each line of this table corresponds to one qualitatively
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Table 4.25: Sentences Assigned to Qualitatively Acceptable Text Unit Cluster 6 in Iter-
ation 2 (cf. News Items in Table 4.1 on Page 72)

Sentence of Reuters News Item Item Text Sentence

Closing is expected on August 30. 17109 ťE2 4

The companies indicated that the sale is expected to be completed by the
end of November.

115995 ťE5 3

Table 4.26: Sentences Assigned to Qualitatively Acceptable Text Unit Cluster 5 in Iter-
ation 3 (cf. News Items in Table 4.1 on Page 72)

Sentence of Reuters News Item Item Text Sentence

Miller Building Systems Inc said it agreed to sell its Miller Structures Inc
unit in California to Modtech Inc, a maker of modular classrooms.

78899 ťE4 2

VASCO Corp said it agreed to sell its consulting and technical organiza-
tion, VASCO Performance System, to Wizdom Systems Inc.

16106 ťE1 2

acceptable text unit cluster and lists the iteration number, its cluster number, the au-
tomatically generated default cluster, the final cluster label chosen by a domain expert,
as well as a reference to the table visualizing all text units assigned to the respective
cluster. In this context, Tables 4.25 and 4.26 show the content of two qualitatively ac-
ceptable text unit clusters that have not yet been referred to in the course of this work.
Inspecting all five clusters reveals that list-based default labels, which are prefixed with
"DEFAULT_", apparently provide a correct, high-level content description for text units
assigned to the corresponding clusters. For all five clusters, however, the domain expert
modified the default label to make explicit the prevailing semantic concept in a concise
and human comprehensible way. In this example, dominant descriptors were typically re-
ordered and augmented with conjunctions or prepositions (e.g., AgreementOnUnitSale).
Furthermore, a few words were added to default labels to make the respective context
more explicit (e.g., ExpectedDealClosing). In particular, the label EditingNewsdesk
illustrates the necessity of utilizing human domain knowledge.

Effect on KDT Process Flow When introducing the algorithm PerformClusteringItera-
tion in Subsection 4.3.4 on iterative clustering, we have anticipated that discovered pat-
terns remain to be post-processed prior to starting a new iteration. Acceptable text
unit clusters are semantically labeled, and the concept of their intermediate text units
is set accordingly. Consequently, Algorithm 4.5 on page 138 extends the algorithm
PerformClusteringIteration such that each clustering iteration is finalized by appropri-
ately labeling discovered text unit clusters that are considered qualitatively acceptable.
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Algorithm 4.5 PerformClusteringIteration (Complete)
Input: (ā: IntTextArchive, m: IterationMetadata)
Output: (ā: IntTextArchive, m: IterationMetadata)
1: ā := m.descriptorWeightingScheme().createVectorsInDiscoveryMode(ā)
2: ā := m.clusteringAlgorithm().executeInDiscoveryMode(ā)
3: Ct: TextUnitClustering := Ct.create(ā,m.iterationNumber(),

m.clusteringAlgorithm().maximumClusterIdentifier())
4: Ct.automatedRankingOfClusters(m)
5: Ct.interactiveScreeningOfClusterRanking(m)
6: Ct.automatedLabelingOfClusters(m)
7: Ct.interactiveReviewOfClusterLabels(m)
8: m.setTextUnitClustering(Ct)

Subsequent to automatically ranking clusters and interactively screening the result,
the operation automatedLabelingOfClusters(m: IterationMetadata) of abstract data type
TextUnitClustering is executed (cf. line 6 of Algorithm 4.5). For each qualitatively ac-
ceptable cluster in the iteration-specific text unit clustering, a default label is automat-
ically created. More specifically, cluster labels are encapsulated by the corresponding
concepts (see Definition 6 on page 59 and Appendix B.8). In addition, all intermediate
text units assigned to acceptable clusters are updated accordingly to associate them with
semantic concepts as well. The strongly recommended interactive review of default clus-
ter labels is performed by executing the operation interactiveReviewOfClusterLabels(m:
IterationMetadata) of abstract data type TextUnitClustering. This operation supports
domain experts in interactively approving or, if necessary, correcting automatically gen-
erated cluster labels. Correcting cluster labels and concepts, respectively, also triggers a
concept update of intermediate text units assigned to the respective clusters. At the end
of each clustering iteration, all intermediate text units assigned to qualitatively acceptable
clusters comprise the corresponding concept. Analogously, concepts of intermediate text
units assigned to unacceptable clusters take the null value. Unless the iterative clustering
process is discontinued, the latter text units are input to the next iteration because they
are assigned to unacceptable and thus unlabeled clusters.

4.4.2 Establishing a Concept-Based XML DTD

Upon completion of the iterative clustering phase, two important steps of the post-
processing phase remain to be accomplished. The final conversion of the entire training
text archive into semantically marked-up XML documents requires an existing concept-
based XML document type definition. In this subsection, we focus on the task of deriving
this XML document type definition and therefore concisely recap relevant terminology,
describe the process of establishing a concept-based DTD, present an example, and outline
the effect of DTD creation on the KDT process flow.

138



4.4 Post-Processing of Discovered Patterns

Terminology In Definition 12 on page 61, we have introduced the framework-specific no-
tion of conceptual document structures, whose instances are encapsulated by the abstract
data type ConceptualDocumentStructure (see Appendix B.18 on page 227). Each instance
of this ADT encompasses the information necessary to establish the corresponding XML
DTD: the concepts identified during the pattern discovery phase along with frequently
occurring named entity types. Following the construction of a conceptual document struc-
ture from an intermediate text archive, the corresponding XML document type definition
can be straightforwardly output by applying the syntax rules defined by the World Wide
Web Consortium (2000). To enable a valid semantic XML markup of new text documents
originating from the same domain as the training archive, the resulting conceptual docu-
ment structure is persistently stored for usage in the batch-oriented knowledge application
phase of our framework.

Subsequent to its creation, a conceptual document structure comprises all concepts
discovered in the corresponding intermediate text archive. Furthermore, the resulting
conceptual document structure establishes a connection between concepts and named en-
tity types that frequently appear in intermediate text units assigned to them. To focus on
concept-specific named entity types that typically occur within a certain semantic context,
infrequent or noisy occurrences of named entity types are omitted when constructing a
conceptual document structure. Particularities of the domain under consideration often
necessitate utilizing an adjustable threshold for distinguishing between signal (i.e., typical
named entity types in text units featuring a certain concept) and noise. Since named
entity types ultimately correspond to attributes of semantic XML tags, we introduce our
framework-specific notion of attribute support as follows:

Definition 40 (Attribute Support) Let ā : IntTextArchive denote an intermediate text
archive. The attribute support ā.attributeSupport(o, p) of named entity type p: NamedEn-
tityType within intermediate text units of ā assigned to concept o: Concept is defined as
the ratio of the number of intermediate text units in ā that are assigned to concept o and
whose set of intermediate named entities contains a named entity of type p, to the total
number of intermediate text units in ā assigned to concept o. If no intermediate text unit
is assigned to concept o, ā.attributeSupport(o, p) is defined to be zero.

A formal, multi-set-based definition of attribute support is given in the specification of
the ADT IntTextArchive in Appendix B.29. Attribute support takes values in the interval
[0; 1]. Analogous to our notion of descriptor support, this term is inspired by the support
of association rules in a data set (cf. Agrawal et al., 1993, p. 208). Attribute support serves
as a thresholding input parameter and thus allows for incorporating domain knowledge in
the knowledge discovery process. For typical text archives, a threshold of 0.1 constitutes
an appropriate setting. In this case, a named entity type only becomes an attribute of a
certain XML tag if at least 10% of the text units assigned to the corresponding semantic
concept comprise named entities of the focal type.
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4 DIAsDEM Knowledge Discovery Process

Table 4.27: Labels of Conceptual Document Structure NewsItem Describing the Exem-
plary Text Archive (cf. News Items in Table 4.1 on Page 72)

i Label of Concept i Labels of Named Entity Types Occurring within Concept i

1 AgreementOnUnitSale Company, Place
2 EditingNewsdesk Place

3 ExpectedDealClosing Date

4 NondisclosureOfTerms

5 SaleOfBusinessUnit Company

From Conceptual Document Structures to Concept-Based XML DTDs As intro-
duced in Chapter 3, a conceptual document structure is once created in the knowledge
discovery phase of the DIAsDEM framework. Initializing a domain-specific conceptual
document structure requires (i) enumerating the distinct semantic concepts identified
during the preceding iterative pattern discovery phase, (ii) collecting the concept-specific
set of extracted named entity types for each semantic concept, and finally (iii) apply-
ing a user-supplied attribute support threshold to remove noise from the concept-specific
lists of named entity types. This procedure is encapsulated by the constructor create(̌linit:
String, ā: IntTextArchive, pAS: Real) of the abstract data type ConceptualDocumentStruc-
ture (see Appendix B.18 on page 227). Given the alphanumeric label ľinit that concisely
describes the common theme of text documents in intermediate text archive ā and the
attribute support threshold pAS, this constructor performs one pass over all text units in
ā to collect semantic concepts and named entity types occurring in their respective text
units as well as one pass over all concept-specific sets of named entity types to apply the
attribute support threshold.

Table 4.27 lists the main content of the conceptual document structure established for
the small exemplary text archive used throughout this chapter. Automatically created on
the basis of an attribute support of 10%, this conceptual document structure comprises
all semantic concepts discovered and labeled during the pattern discovery phase (cf. Ta-
ble 4.24 on page 136). For instance, at least 10% of all text units featuring the concept
labeled AgreementOnUnitSale contain named entities of type Company and Place, re-
spectively. The corresponding text unit cluster is visualized in Table 4.26 on page 137.
By contrast, there are no named entity types whose instances appear in at least 10% of
all text units that are associated with the concept NondisclosureOfTerms.

The operation xmlDtd() of abstract data type ConceptualDocumentStructure outputs
the concept-based XML document type definition as a string. This DTD consists of
domain-specific declarations in a syntax standardized by the World Wide Web Consor-
tium (2000) that define both the components and the structure of semantically marked-up
XML documents (cf. Geroimenko, 2004, p. 42). Table 4.28 lists an exemplary, concept-
based XML document type definition. It defines the components and the structure of
semantically tagged news items from the example text archive on announcements of busi-
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Table 4.28: Line-Numbered, Concept-Based XML Document Type Definition of the Con-
ceptual Document Structure NewsItem (cf. Table 4.27)

1: <?xml version="1.0" encoding="ISO-8859-1"?>

2:
3: <!ELEMENT NewsItem (MetaData*, TaggedDocument)>

4:
5: <!ELEMENT MetaData (Name, Content)>

6: <!ELEMENT Name (#PCDATA)>

7: <!ELEMENT Content (#PCDATA)>

8:
9: <!ELEMENT TaggedDocument (#PCDATA

10: | AgreementOnUnitSale

11: | EditingNewsdesk

12: | ExpectedDealClosing

13: | NondisclosureOfTerms

14: | SaleOfBusinessUnit

15: )* >

16:
17: <!ELEMENT AgreementOnUnitSale (#PCDATA)>

18: <!ELEMENT EditingNewsdesk (#PCDATA)>

19: <!ELEMENT ExpectedDealClosing (#PCDATA)>

20: <!ELEMENT NondisclosureOfTerms (#PCDATA)>

21: <!ELEMENT SaleOfBusinessUnit (#PCDATA)>

22:
23: <!ATTLIST AgreementOnUnitSale Company CDATA #IMPLIED>

24: <!ATTLIST AgreementOnUnitSale Place CDATA #IMPLIED>

25: <!ATTLIST EditingNewsdesk Place CDATA #IMPLIED>

26: <!ATTLIST ExpectedDealClosing Date CDATA #IMPLIED>

27: <!ATTLIST SaleOfBusinessUnit Company CDATA #IMPLIED>

ness unit sales. The construction of concept-based DTDs is henceforth coarsely described
and illustrated by referring to Table 4.28. The DTD generation involves five major steps,
each of which performs basic string concatenations:

1. Create the XML document type definition header that consists of an XML declara-
tion specifying the XML version and the file encoding (e.g., see line 1 of Table 4.28)
and the declaration of the root element, such as NewsItem defined in line 3 of Ta-
ble 4.28. In DTDs created within our framework, the root element solely consists of
two types of children. The optional sequence of metadata elements labeled Meta-

Data allows for the persistent storage of metadata about the original text document
(e.g., its source file name). Metadata management is not covered by this work. The
mandatory element TaggedDocument comprises the results of converting the original
text document into a semantically marked-up document.

2. Generate a DTD section that defines the structure of the metadata element named
MetaData. As illustrated in lines 5 through 7 of Table 4.28, the MetaData element
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Algorithm 4.6 EstablishConceptualDocumentStructure

Input: (ā: IntTextArchive, ľ: String, pAS: Real)
Output: (ŝ: ConceptualDocumentStructure)
1: ŝ := ConceptualDocumentStructure.create(̌l, ā, pAS)

consists of two sub-elements (i.e., Name and Content) that contain the actual meta-
data in the form of character data. The keyword #PCDATA is historically derived
from ‘parsed character data’ (cf. World Wide Web Consortium, 2000).

3. Output a DTD section that specifies the content of the element TaggedDocument.
Since our framework for semantic XML tagging aims at marking up structural, non-
overlapping text units (cf. Definition 5 of text unit layers), the element Tagged-

Document consists of mixed content in the form of marked-up text units, which are
represented by elements labeled in accordance with semantic concepts, and plain text
units (i.e., character data specified by the keyword #PCDATA). The tagged document
section is a sequence of marked-up and plain text units. In particular, DTD ele-
ments may occur multiple times within a single marked-up document. In lines 9
through 15 of Table 4.28, the element TaggedDocument is declared for the exemplary
text archive and enumerates the labels of all discovered concepts.

4. For each DTD element that represents a semantic concept, create the corresponding
element declaration. As indicated by the stand-alone keyword #PCDATA in lines 17
through 21 of Table 4.28, these elements are defined to comprise merely character
content as our framework is intentionally restricted to generate non-overlapping text
unit markup only.

5. For DTD elements representing a semantic concept associated with at least one
named entity type in the conceptual document structure, generate the corresponding
attribute declarations. As illustrated in lines 23 through 27 of Table 4.28, each
attribute declaration associates an element name (e.g., AgreementOnUnitSale in
line 23) with one named entity type label (e.g., Company in line 23). The keyword
CDATA specifies that only string literals are allowed attribute values. All attributes
of XML tags are declared optional by the keyword #IMPLIED.

Once the concept-based XML document type definition is created, a copy is saved in the
local file system and subsequently referenced by automatically generated XML documents.
In accordance with the objectives of our framework, the generated concept-based DTD
neither supports nested semantic XML tags nor imposes any other structural constraints
on the sequence of XML tags within marked-up documents.

Effect on KDT Process Flow Algorithm 4.6 (EstablishConceptualDocumentStructure)
is executed subsequent to completing the final clustering iteration. This algorithm requires
three input parameters: the focal intermediate text archive ā, an alphanumeric label ľ that
describes the common theme of text documents therein, and the attribute support thresh-
old pAS. Algorithm 4.6 instantiates a conceptual document structure for the intermediate
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Algorithm 4.7 CreateSemanticallyMarkedUpTextArchive
Input: (ā: IntTextArchive, ŝ: ConceptualDocumentStructure)
Output: (â: SmuTextArchive)
1: â: SmuTextArchive := â.create() // initialize output smu. text archive
2: for all i: Integer := 1, 2, . . . , ā.size() do // iterate through int. text documents
3: t̄: IntTextDocument := ā.intTextDocument(i) // extract ith int. text document
4: r̄: IntTextUnitLayer := t̄.intTextUnitLayer() // extract int. text unit layer
5: r̂: SmuTextUnitLayer := r̂.create() // initialize output smu. text unit layer
6: for all j: Integer := 1, 2, . . . , r̄.size() do // iterate through int. text units
7: ū: IntTextUnit := r̄.intTextUnit(j) // extract jth int. text unit
8: û: SmuTextUnit := null // declare output smu. text unit
9: if ū.concept() 6= null and ŝ.contains(ū.concept()) then // check for valid concept

10: û := û.create(ū.originalTextUnit(), ū.concept(),
11: ŝ.validNamedEntities(ū.concept(), ū.intNamedEntities())) // text unit is marked-up
12: else
13: û := û.create(ū.originalTextUnit(),null,null) // text unit is not marked-up
14: end if
15: r̂.appendSmuTextUnit(û) // append new smu. text unit
16: end for
17: t̂: SmuTextDocument := t̂.create(t̄.textDocument(), r̂) // create output smu. text document
18: â.appendSmuTextDocument(t̂) // append smu. text document
19: end for

text archive under consideration, as introduced in this subsection. The result constitutes
input to semantic XML tagging, which is performed in the final post-processing step of
both the knowledge discovery process and the batch-oriented knowledge application pro-
cess. Hence, the domain-specific conceptual document structure is persistently stored for
future usage.

4.4.3 Semantic XML Tagging of Text Documents

The post-processing step of our framework-specific knowledge discovery phase is concluded
by transforming the intermediate text archive into a semantically marked-up text archive,
as specified in Definition 11 on page 61. In addition, semantically tagged XML documents
remain to be created for the purpose of evaluating the quality of semantic markup. In
this subsection, we describe these two post-processing steps and outline their effect on the
KDT process flow.

Creating a Semantically Marked-Up Text Archive Given a domain-specific conceptual
document structure, Algorithm 4.7 (CreateSemanticallyMarkedUpTextArchive) converts
the input intermediate text archive into a semantically marked-up text archive. This
conversion procedure iterates through all intermediate text documents and their text
units to instantiate the corresponding semantically marked-up text documents.

Since our framework is designed to identify only frequently recurring thematic con-
cepts at the text unit level, original text units are either semantically annotated, if
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Table 4.29: Semantically Marked-Up Text Units of the Text Document ťE1 (cf. Table 4.1
on Page 72 and Table 4.2 on Page 76)

ûE1,1: SmuTextUnit = ( 〈"USA: VASCO says to sell consulting unit."〉, saleOfBusinessUnit,
{ (company, "ID: 1; Name: VASCO") } )

ûE1,2: SmuTextUnit = ( 〈"VASCO Corp said it agreed to sell its consulting and technical

organization, VASCO Performance System, to Wizdom Systems Inc."〉, agreementOnUnitSale,
{ (company, "ID: 5; Name: VASCO Corp"), (company, "ID: 6; Name: VASCO Performance

System"), (company, "ID: 7; Name: Wizdom Systems Inc.") } )

ûE1,3: SmuTextUnit = ( 〈"Terms were not disclosed."〉, nondisclosureOfTerms, ∅ )

ûE1,4: SmuTextUnit = ( 〈"-Chicago Newsdesk 312-408-8787"〉, editingNewsdesk,
{ (place, "Chicago") } )

they are assigned a concept, or copied without semantic markup into the marked-up
document. Consequently, two cases are distinguished in lines 9 through 14 of Algo-
rithm 4.7. If the concept associated with an intermediate text unit assumes the null
value or if it is not contained in the domain-specific conceptual document structure,
the corresponding semantically marked-up text unit is in fact neither assigned a the-
matic concept nor associated with named entities occurring therein. Otherwise, the
new semantically marked-up text unit is associated with the respective concept and
a set of named entities identified in the original text unit. However, the operation
validNamedEntities(oinput: Concept, Pinput: SetOfIntNamedEntities): SetOfNamedEntities
of ADT ConceptualDocumentStructure ensures that the latter set comprises only named
entities whose type is valid in the context of the respective semantic concept, as defined
by the conceptual document structure.

Table 4.29 illustrates the results of converting the text units of exemplary text ťE1 into
semantically marked-up text units on the basis of the conceptual document structure
established beforehand (cf. Table 4.27). In this example, all text units are assigned a
semantic concept and a possibly empty set of extracted named entities. In accordance
with Definition 8 on page 60, the semantically marked-up text unit ûE1,1 is a 3-tuple com-
prising the original text unit (i.e., 〈"USA: VASCO says to sell consulting unit."〉),
the domain-specific concept that experts typically associate with similar text units (i.e.,
saleOfBusinessUnit), and the set of extracted named entities. The latter contains only one
element, namely, (company, "ID: 1; Name: VASCO") mentioned in the text unit. For the
sake of clarity, alphanumeric labels of semantic concepts (e.g., AgreementOnUnitSale in
ûE1,2) and named entity types (e.g., Company in ûE1,2) are omitted in Table 4.29. Further-
more, the semantically marked-up text unit ûE1,3 contains an empty set of named entities
because no instances of valid types have been extracted during the pre-processing phase.
If a text unit were not assigned a semantic concept at all, the concept and the set of
named entities would assume the null value in the corresponding intermediate text unit.
For instance, the marked-up text unit ûE4,3: SmuTextUnit = ( 〈"Final settlement is
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Table 4.30: Line-Numbered, Semantically Marked-Up XML Document Created by Tag-
ging the Text Document ťE1 (cf. Table 4.1 on Page 72)

1: <?xml version="1.0" encoding="ISO-8859-1"?>

2: <!DOCTYPE NewsItem SYSTEM "NewsItem.dtd">

3:
4: <NewsItem>

5: <TaggedDocument>

6: <SaleOfBusinessUnit Company="ID: 1; Name: VASCO">USA: VASCO says to sell

consulting unit.</SaleOfBusinessUnit>

7: <AgreementOnUnitSale Company="ID: 5; Name: VASCO Corp [AND] ID: 6; Name:

VASCO Performance System [AND] ID: 7; Name: Wizdom Systems Inc.">VASCO

Corp said it agreed to sell its consulting and technical organization,

VASCO Performance System, to Wizdom Systems Inc.</AgreementOnUnitSale>

8: <NondisclosureOfTerms>Terms were not disclosed.</NondisclosureOfTerms>

9: <EditingNewsdesk Place="Chicago">-Chicago Newsdesk 312-408-8787

</EditingNewsdesk>

10: </TaggedDocument>

11: </NewsItem>

scheduled for October 21, Miller said."〉, null, null ) of the forth exemplary text
(cf. Table 4.1 on Page 72) is not assigned to a semantic concept.

Outputting Semantically Tagged XML Documents Subsequent to creating a semanti-
cally marked-up text archive, the operation xmlDocuments(â: SmuTextArchive): String[]
provided by ADT ConceptualDocumentStructure outputs semantically tagged XML docu-
ments into an array of strings. More specifically, each string corresponds to one valid,
semantically tagged XML document that adheres to the XML specification (cf. World
Wide Web Consortium, 2000). Furthermore, the structure of each XML document con-
forms to the concept-based XML document type definition established beforehand. Cre-
ating a semantically tagged XML document that corresponds to one specific semantically
marked-up text document involves the following steps. Analogous to DTD creation, these
steps mainly involve template-based string operations.

1. Generate the XML document prolog that consists of an XML declaration specifying
the XML version and the file encoding (e.g., see line 1 of Table 4.30), as well as the
document type declaration (i.e., NewsItem defined in line 2 of Table 4.30), which
references the concept-based document type definition depicted in Table 4.28.

2. Initialize the XML document body by appending the start tag of the root element
(e.g., <NewsItem> in line 4 of Table 4.30). Optionally, append a sequence of meta-
data elements, such as <MetaData><Name>lang</Name><Content>en</Content>

</MetaData>. Since metadata management is not covered by this work, Table 4.30
does not contain this section. Moreover, append the start tag <TaggedDocument>
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Table 4.31: Line-Numbered, Semantically Marked-Up XML Document Created by Tag-
ging the Text Document ťE4 (cf. Table 4.1 on Page 72)

1: <?xml version="1.0" encoding="ISO-8859-1"?>

2: <!DOCTYPE NewsItem SYSTEM "NewsItem.dtd">

3:
4: <NewsItem>

5: <TaggedDocument>

6: <SaleOfBusinessUnit Company="ID: 1; Name: Modtech">USA: Miller to sell

unit to Modtech.</SaleOfBusinessUnit>

7: <AgreementOnUnitSale Company="ID: 6; Name: Miller Building Systems Inc

[AND] ID: 7; Name: Miller Structures Inc [AND] ID: 8; Name: Modtech Inc"

Place="California">Miller Building Systems Inc said it agreed to sell

its Miller Structures Inc unit in California to Modtech Inc, a maker of

modular classrooms.</AgreementOnUnitSale>

8: Final settlement is scheduled for October 21, Miller said.

9: <NondisclosureOfTerms>Terms were not disclosed.</NondisclosureOfTerms>

10: <EditingNewsdesk Place="Chicago">-Chicago Newsdesk 312-408-8787

</EditingNewsdesk>

11: </TaggedDocument>

12: </NewsItem>

(cf. line 5 of Table 4.30) to open the section containing both semantically marked-up
and plain text units in the order of their occurrence in the original document.

3. Sequentially iterate through all semantically marked-up text units contained in the
text unit layer of the semantically marked-up text document to be converted into
an XML document. Since text units are either assigned to a semantic concept or
left without an annotation, we distinguish the following two cases:

a) If the text unit shall not be marked-up and its concept assumes the null value,
respectively, append a string that merely contains the original text unit. This
task can be accomplished by executing the operation textUnit() : TextUnit
of ADT SmuTextUnit followed by the operation content() : String of ADT
TextUnit. For example, line 8 of Table 4.31 represents a sentence without
semantic markup as its content is not enclosed by semantic XML tags.

b) If the text unit shall be marked-up and its concept assumes a value other
than null, the original text unit is initially retrieved as described above. Sub-
sequently, the original text unit is enclosed by a semantic start tag and the
corresponding end tag. Both tags have the same element name that is equal to
the label of the semantic concept. Hence, the element name is created via the
operation concept(): Concept of ADT SmuTextUnit followed by the operation
label(): String of ADT Concept. Furthermore, the start tag is augmented with
attributes if the focal semantically marked-up text unit comprises a non-empty
set of named entities. To this end, an attribute name-value pair is constructed

146



4.4 Post-Processing of Discovered Patterns

Algorithm 4.8 CreateSemanticallyTaggedXmlDocuments
Input: (ā: IntTextArchive, ŝ: ConceptualDocumentStructure)
Output: (â: SmuTextArchive, x̂DTD: String, x̂Docs: String[])
1: â := CreateSemanticallyMarkedUpTextArchive(ā, ŝ) // convert int. into smu. text archive
2: x̂DTD := ŝ.xmlDtd() // generate concept-based XML DTD
3: x̂Docs := ŝ.xmlDocuments(â) // generate semantically tagged XML documents

for each named entity in the respective set of named entities. For each named
entity, the attribute name equals the label of its type that is directly retrieved
by executing the operation label(): String of ADT NamedEntity. Its attribute
value corresponds to the canonical string representation of a named entity (cf.
Subsection 4.2.2), which is accessible via the operation value(): String of ADT
NamedEntity. For example, line 9 of Table 4.31 represents a marked-up sen-
tence without any extracted named entities. In contrast, three companies and
one place are extracted from the marked-up sentence listed in line 7.

4. Finally, append two end tags (i.e., </TaggedDocument> and </NewsItem>) that
close the respective sections. The former one terminates the section of semantically
annotated text units whereas the latter end tag closes the entire XML document
body. The usage of these tags is illustrated in lines 11 and 12 of Table 4.31.

After creating an array of strings, each of which represents one semantically tagged
XML document, a standard file operation is executed to copy all XML documents to the
local file system. In the knowledge discovery phase of our framework, a random sample
of these XML documents is utilized to assess the tagging quality. The quality evaluation
of semantic markup is discussed in Section 6.1. In the knowledge application phase,
semantically tagged XML documents constitute the major output.

Effect on KDT Process Flow Having established a conceptual document structure,
Algorithm 4.8 (CreateSemanticallyTaggedXmlDocuments) is executed to conclude our
knowledge discovery process by converting the intermediate text archive into a semanti-
cally marked-up text archive. Given intermediate text archive ā and conceptual document
structure ŝ, this algorithm transforms ā into the semantically marked-up text archive
â using the algorithm CreateSemanticallyMarkedUpTextArchive described above in de-
tail. In addition, both the concept-based XML document type definition x̂DTD and
the array x̂Docs, which contains all semantically tagged XML documents, are created
and returned. To this end, Algorithm 4.8 utilizes two operations provided by ADT
ConceptualDocumentStructure, which have been introduced above and in the preceding
subsection, respectively. The string representation of the XML document type definition
is referenced by all XML documents. We deliberately refrain from discussing any issues
related to exporting the string-based results of Algorithm 4.8 to the local file system or
an XML-enabled database.
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4.5 Bridging Knowledge Discovery and Knowledge

Application

Initially, this section summarizes the generic KDT process flow for the knowledge discovery
phase of the DIAsDEM framework, which has been described in detail in the preceding
sections. Once parameterized during an interactive knowledge discovery session, this KDT
process flow constitutes the basis for an automated XML tagging of thematically similar
text documents. Subsequently, we introduce the framework-specific notion of classification
iterations that are performed in the batch-oriented knowledge application phase. For
each clustering iteration executed during the iterative pattern discovery, there exists a
corresponding classification iteration that invokes the clustering algorithm in application
mode to assign new text units to previously identified text unit clusters. Finally, we outline
the generic KDT process flow for the fully automated knowledge application phase. This
generic process flow illustrates the sequence of parameterized KDT algorithms, which is
executed without human intervention during knowledge application.

KDT Process Flow for Knowledge Discovery Phase Algorithm 4.9 abstractly sum-
marizes the entire generic KDT process flow that is parameterized and executed during
the knowledge discovery phase of our DIAsDEM framework for semantic XML tagging.
In the preceding sections of this chapter, all relevant pre-processing, pattern discovery,
and post-processing steps have been discussed at the necessary level of detail.

As illustrated in Figure 3.2 on page 65, the interactive KDT process takes as input a
training archive of plain text documents, a set of named entity types to be extracted during
pre-processing, and a domain-specific controlled vocabulary. Upon completion of the KDT
process, the following output is created: a domain-specific conceptual document structure
along with a semantically marked-up training archive, a concept-based XML document
type definition, and one semantically marked-up XML document for each input training
text document. Furthermore, an instance of the abstract data type KdtProcessMetadata
(see Appendix B.38 on page 242) is created, which enables the persistent storage of im-
portant metadata associated with one specific parameterized KDT process flow. Besides
storing the set of relevant named entity types, this process flow metadata container en-
capsulates all iteration metadata items generated during the interactive, iterative pattern
discovery. Along with the conceptual document structure derived during knowledge dis-
covery, the KDT process metadata container is an important input for the knowledge
application process.

Subsequent to instantiating a KDT process metadata container in line 1 of Algo-
rithm 4.9, the input text archive is pre-processed in lines 2 through 4, as described in
Section 4.2. The iteration identifier t is instantiated in line 5 prior to starting the pat-
tern discovery step, which corresponds to lines 6 through 14. Within each clustering
iteration, a KDT expert interactively parameterizes the descriptor weighting scheme, an
appropriate clustering algorithm, and the set of cluster quality criteria (cf. Section 4.3).
Each clustering iteration is concluded by persistently saving the corresponding iteration
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Algorithm 4.9 Generic KDT Process Flow for the Knowledge Discovery Phase
Input: (ǎT: TextArchive,P: SetOfNamedEntityTypes,V: ControlledVocabulary)
Output: (ŝ: ConceptualDocumentStructure, k: KdtProcessMetadata,

âT: SmuTextArchive, x̂DTD: String, x̂TDocs: String[])
1: k: KdtProcessMetadata := k.create(P) // instantiate KDT process metadata
2: ā: IntTextArchive := DecomposeAndTokenizeTextDocuments(ǎT) // pre-process text documents
3: ā := ExtractNamedEntities(ā, k.setOfNamedEntityTypes())
4: ā := LemmatizeAndDisambiguateWords(ā)
5: t: Integer := 0 // initialize iteration counter
6: repeat
7: t := t + 1 // increment iteration counter
8: w: DescriptorWeightingScheme := w.create(t, ·, ·,V) // interactively parameterize w
9: g: ClusteringAlgorithm := g.create(t, ·, ·) // interactively parameterize g

10: q: ClusterQualityCriteria := q.create(·, ·, ·, ·, ·, ·) // interactively parameterize q
11: m: IterationMetadata := m.create(t,w, g, q) // instantiate iteration metadata
12: (ā,m) := PerformClusteringIteration(ā,m) // execute clustering iteration
13: k.appendIterationMetadata(m) // persistently store iteration metadata
14: until no qualitatively acceptable text unit cluster is found in iteration t
15: ŝ := EstablishConceptualDocumentStructure(ā, ·, ·) // interactively parameterize algorithm
16: (âT, x̂DTD, x̂TDocs) := CreateSemanticallyTaggedXmlDocuments(ā, ŝ) // mark up text documents

metadata container for subsequent use in the knowledge application phase. Finally, the
post-processing steps of establishing a domain-specific conceptual document structure
and transforming the input text archive into a semantically marked-up text archive (cf.
Section 4.4) correspond to lines 15 and 16 of Algorithm 4.9.

At the outset of this work in Section 3.1, we have introduced our framework-specific no-
tion of KDT process flows as well as the corresponding abstract data types KdtAlgorithm
(see Appendix B.19 on page 228) and KdtProcessFlow (see Appendix B.20 on page 229).
At this point, we assume an existing KDT workbench that effectively supports domain and
KDT experts in parameterizing and executing the generic KDT process flow listed in Al-
gorithm 4.9. As indicated by the operation appendKdtAlgorithm(gnew: KdtAlgorithm) of
ADT KdtProcessFlow, a suitable workbench shall provide the necessary means of record-
ing all KDT algorithms parameterized and executed by the KDT expert in the course
of knowledge discovery. Upon completion of this interactive knowledge discovery session,
the entire sequence of recorded KDT algorithms constitutes a parameterized KDT pro-
cess flow, which is required for automated semantic tagging in the knowledge application
phase. Prior to its first automated batch execution, however, the parameterized KDT
process flow needs to be edited. Below we describe the necessary modifications that in
fact bridge knowledge discovery and knowledge application within our framework. In
Chapter 5, we describe the research prototype DIAsDEM Workbench, which fully
supports the knowledge discovery process of our framework.

Iterative Classification of Text Unit Vectors The knowledge application phase of our
framework is an effective means of automatically utilizing the domain-specific concepts
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Figure 4.4: Iterative Classification in the DIAsDEM Knowledge Application Process

acquired beforehand to semantically annotate text documents from the same domain. As
outlined in Section 3.4 and Subsection 4.3.4, each clustering iteration performed during
pattern discovery corresponds to one classification iteration in the knowledge application
process. Figure 4.4 highlights all components of the latter process that form the iterative
classification step.

Analogous to iterative text unit clustering, each classification iteration starts with a
pre-processing step that maps text units that are not yet assigned to an acceptable clus-
ter onto real-valued text unit vectors. The iteration-specific descriptor weighting scheme
required by this operation is retrieved from the corresponding iteration metadata con-
tainer. Subsequently, the clustering algorithm selected, parameterized, and executed in
the KDT process is run in application mode (cf. Subsection 4.3.2). Each text unit vector
is assigned to one of the previously discovered text unit clusters. Again, the clustering
model is retrieved from the corresponding iteration metadata item. Based on the cluster
quality decisions made in the KDT phase, text units are finally associated with semantic
concepts if their vectors are assigned to qualitatively acceptable text unit clusters. Se-
mantic labels of acceptable clusters are also stored in the iteration metadata container.
All remaining text units constitute the input data set for the next classification itera-
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4.5 Bridging Knowledge Discovery and Knowledge Application

Algorithm 4.10 PerformClassificationIteration
Input: (ā: IntTextArchive, m: IterationMetadata)
Output: (ā: IntTextArchive)
1: ā := m.descriptorWeightingScheme().createVectorsInApplicationMode(ā)
2: ā := m.clusteringAlgorithm().executeInApplicationMode(ā)
3: ā := m.textUnitClustering().conceptAssignmentInApplicationMode(ā)

Algorithm 4.11 Generic KDT Process Flow for the Knowledge Application Phase
Input: (ǎA: TextArchive, ŝ: ConceptualDocumentStructure, k: KdtProcessMetadata)
Output: (âA: SmuTextArchive, x̂DTD: String, x̂ADocs: String[])
1: ā: IntTextArchive := DecomposeAndTokenizeTextDocuments(ǎA) // pre-process text documents
2: ā := ExtractNamedEntities(ā, k.setOfNamedEntityTypes())
3: ā := LemmatizeAndDisambiguateWords(ā)
4: for t: Integer := 1, 2, . . . , k.numberOfIterations() do
5: ā := PerformClassificationIteration(ā, k.iterationMetadata(t)) // execute classification iteration t
6: end for
7: (âA, x̂DTD, x̂ADocs) := CreateSemanticallyTaggedXmlDocuments(ā, ŝ) // mark up text documents

tion. Since neither the cluster quality is assessed nor acceptable text unit clusters are
semantically labeled, the entire iterative classification step executes without any human
intervention. Consequently, iteration metadata items are not modified at all, but merely
accessed in a read-only manner during the iterative text unit classification.

The abstract Algorithm 4.10 (PerformClassificationIteration) encapsulates one com-
plete iteration of text unit classification. Taking a pre-processed, intermediate text archive
and an iteration metadata container as input, this algorithm performs one classification
iteration and returns an archive comprising updated intermediate text documents. Un-
like its explorative counterpart, namely, Algorithm 4.5 (PerformClusteringIteration; cf.
page 138), PerformClassificationIteration does not comprise any interactive operations
at all. Furthermore, Algorithm 4.10 neither instantiates nor modifies iteration metadata
items. Instead, this algorithm only executes operations provided by instantiations of
abstract data types (e.g., the parameterized descriptor weighting scheme) that are persis-
tently stored in the iteration metadata container passed as an input parameter.

KDT Process Flow in Knowledge Application Phase The entire generic KDT process
flow for the second phase of our DIAsDEM framework is covered by abstract Algo-
rithm 4.11. It takes as input a typically large application text archive comprising docu-
ments that are thematically similar to the ones marked up for training purposes, the
conceptual document structure derived in the knowledge discovery phase, and the meta-
data container instantiated therein. Upon completion of this algorithm, the automatically
generated output consists of the semantically marked-up application text archive and one
semantically marked-up XML document for each input text document. In addition, the
concept-based XML document type definition established during knowledge discovery
is output because this DTD is referenced by all XML documents. The concept-based
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4 DIAsDEM Knowledge Discovery Process

XML document type definition is copied into an output string by executing the operation
xmlDtd(): String, which is provided by the instantiated conceptual document structure
passed as an input parameter to Algorithm 4.11.

Unlike the generic KDT process for the knowledge discovery phase discussed above,
Algorithm 4.11 does not comprise any interactive components at all. In lines 1 through 3,
the application text archive is pre-processed by applying exactly the same parameterized
algorithms as in the initial knowledge discovery phase. Having concluded the text pre-
processing steps, an iterative text unit classification is performed (see lines 4 through 6)
as introduced above. In line 7 of this algorithm, finally, all input text documents are
semantically marked up to generate the required output.

Performing knowledge discovery in an appropriate workbench results in a fully pa-
rameterized KDT process flow that instantiates the abstract data type KdtProcessFlow
(see Appendix B.20 on page 229). In addition, we assume that this workbench sup-
ports (i) the conversion of a parameterized KDT process flow recorded during knowledge
discovery into a process flow for the knowledge application phase and (ii) the batch-
oriented, automated execution of the resulting parameterized KDT process flow. Trans-
forming the parameterized KDT process flow for execution during knowledge application
involves deleting all interactive instantiations of abstract data types, as well as instan-
tiations and updates of metadata items. Furthermore, each executed clustering itera-
tion is replaced by the corresponding classification iteration. Moreover, the algorithm
EstablishConceptualDocumentStructure is removed from the process flow. The resulting
KDT process flow is fully parameterized for a completely automated, typically repeated
execution within the knowledge application phase of our framework. Our prototypical
DIAsDEM Workbench, which is described in Chapter 5, supports the entire knowl-
edge application process.

4.6 Process Automation vs. Expert Involvement

As emphasized throughout this work, the DIAsDEM framework consists of an intention-
ally semi-automated knowledge discovery phase followed by a fully automated knowledge
application phase. Thereby, we deliberately accept the costs incurred by involving do-
main experts and their valuable knowledge in the initial phase to ultimately generate
high-quality XML markup in the second, batch-oriented knowledge application phase.
Table 4.32 summarizes six items of domain knowledge that are highly recommended for
incorporation into our knowledge discovery process. The use of these six knowledge items
has been motivated and explained in detail in the preceding sections of this chapter. In
addition, Table 4.32 outlines the effect of ignoring this recommendation. Without doubt,
an entirely automated knowledge discovery process would be preferable over our semi-
automated approach to attaining the research questions raised in Section 1.4.

As Fayyad et al. (1996a, p. 42) put it in their seminal article, the “KDD process is in-
teractive and iterative, involving numerous steps with many decisions made by the user.”
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4.6 Process Automation vs. Expert Involvement

Table 4.32: Summary of Domain Knowledge Recommended for Incorporation into the
DIAsDEM Knowledge Discovery Process

Step in KDT
Process

Domain Knowledge to be Supplied by
Human Experts

Effect of Ignoring Recommendation to In-
corporate Domain Knowledge

Text unit cre-
ation

Specification of structural text units as
well as selection and parameterization
of an appropriate algorithm for their
identification in text documents

Default structural text units (e.g., sen-
tences) are created, as implemented by the
employed workbench.

Named entity
extraction

Choice of relevant, domain-specific
named entity types as well as selec-
tion and parameterization of appropri-
ate extraction algorithms

Default extraction is limited to domain-
independent named entity types (e.g.,
dates and names of persons), as imple-
mented by the employed workbench.

Mapping text
units onto text
unit vectors

Establishment of domain-specific con-
trolled vocabulary, which shall be sup-
ported by the employed workbench

Automated feature selection techniques
(cf. Subsection 4.2.4), if implemented by
the employed workbench, may result in an
inferior set of text unit descriptors.

Iterative text
unit clustering

Selection and parameterization of clus-
tering algorithm that most likely finds
a valid, if not the true, clustering
present in text unit vectors

Text unit clusters identified by the default
clustering algorithm implemented by the
employed workbench may not constitute
a highly valid text unit clustering.

Iterative text
unit clustering

Specification of appropriate DIAs-
DEM cluster quality criteria and inter-
active screening of the automatically
created cluster ranking

Applying default cluster quality criteria,
as implemented by the workbench, may
result in marking semantically inhomoge-
neous text unit clusters as acceptable.

Iterative text
unit clustering

Interactive review of the automatically
generated semantic cluster labels

Automatically derived cluster labels may
not fully facilitate a meaningful, domain-
specific, and usable semantic markup.

Furthermore, Fayyad et al. (p. 43) emphasized that deciding whether discovered pat-
terns and fitted models, respectively, “reflect useful or interesting knowledge is part of
the overall, interactive KDD process where subjective human judgment is typically re-
quired.” Analogously, Han and Kamber (2006, p. 31) argued that both interactive mining
of knowledge and the incorporation of background knowledge are still major KDD issues.
For example, Yan et al. (2004, p. 54) stressed the importance of effectively exploiting exist-
ing domain knowledge in a real-world KDD project. When applying knowledge discovery
techniques to find structure in a document collection, Weiss et al. (2005, pp. 120–122)
emphasized the central role of humans in reviewing, assessing, and understanding the
results of the clustering process. This point of view is shared by Agrawal et al. (2000),
Estivill-Castro (2002, p. 69), as well as Huang and Mitchell (2006).

By intentionally employing domain knowledge in an interactive manner, we adopt this
approach to knowledge discovery. In this context, an experimental study conducted by
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Wilcox and Hripcsak (2003) is particularly noteworthy. The authors analyzed the effect
of expert knowledge on the inductive learning process of creating classifiers for medical
texts in terms of data representation, performance of classifiers, and costs of incorporated
domain knowledge. More specifically, different classification algorithms were executed
with varying degrees and types of medical expert knowledge as input. According to
Wilcox and Hripcsak (2003, p. 337), the experiments “showed expert knowledge to be the
most significant factor affecting inductive learning performance, outweighing differences
in learning algorithms.” Although conducted to assess the performance of text classifiers,
these experiments corroborate our decision to actively incorporate domain knowledge for
unsupervised learning as well.

The survey of relevant literature, in particular of the existing work on automated seman-
tic markup in Subsection 2.3.3, revealed that a fully automated, semantic XML markup
of domain-specific text documents is an open research challenge. Consequently, we con-
jecture that a high-quality semantic XML markup of large, domain-specific text archives
currently necessitates the utilization of domain knowledge provided by human experts.
Future progress in complementary research areas (e.g., research into automated learning
of controlled vocabularies) may gradually reduce the necessary human efforts.

Prior to applying the DIAsDEM framework, however, it shall be carefully checked
that the input text archive is large and potentially valuable enough to outweigh the
initial knowledge discovery costs (cf. Section 3.2). After all, the value added, which
is generated by transforming textual content into semantically tagged XML documents
(cf. Section 1.3), shall exceed the knowledge discovery costs. Otherwise, allocating the
typically scarce time of domain and KDT experts to the project cannot be justified from
an economic perspective.

4.7 Summary

The iterative and inherently interactive DIAsDEM knowledge discovery process has been
specified in detail in this chapter. Our framework-specific KDT process offers a compre-
hensive solution to the research questions 1 through 5 posed in Section 1.4. It instantiates
the generic process of knowledge discovery in textual databases illustrated in Figure 4.5
and introduced in Subsection 2.1.1. To sum up this chapter, our DIAsDEM knowledge
discovery process is aligned with the seven steps of the generic KDT process.

1. Goal setting: Our knowledge discovery process is designed to ultimately enable the
automated semantic XML tagging of domain-specific text documents at the text
unit level. The generic, framework-specific KDT process flow guides knowledge
discovery experts when interactively preparing a fully parameterized KDT process
flow for execution in the knowledge application phase of our framework.

2. Selection: The applicability of our KDT process is deliberately restricted to large,
domain-specific text collections comprising rather homogeneous content. A natural
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Figure 4.5: Generic Process of Knowledge Discovery in Textual Databases (Adapted and
Extended from Fayyad et al., 1996b, p. 10)

clustering tendency at the text unit level is required to apply our knowledge dis-
covery process. The potential value added of semantically marking up text archives
shall be greater than the costs of incorporating human expert knowledge.

3. Pre-processing: Having selected an appropriate text archive, all text documents
are pre-processed by decomposing them into structural text units of the chosen
granularity, tokenizing text units, identifying relevant named entities, lemmatizing
words, and finally performing word sense disambiguation, if necessary.

4. Transformation: Given a user-supplied controlled vocabulary of the focal domain,
pre-processed text units are mapped onto real-valued text unit vectors. Vector
components represent the weight, or importance, of text unit descriptors from the
controlled vocabulary within the respective text units.

5. Text mining: Clustering algorithms that satisfy framework-specific selection criteria
are executed to find clusters of text unit vectors, whose members represent semanti-
cally similar text units. Unlike the conventional approach to unsupervised learning,
text unit vectors are repeatedly clustered with gradually reduced input data, vary-
ing parameter settings, and possibly different clustering algorithms. Thereby, both
specific and general, as well as more and less frequent concepts can be discovered.

6. Interpretation and evaluation: In each iteration, framework-specific cluster quality
criteria are applied to separate qualitatively acceptable text unit clusters, whose text
units feature one coherent and frequently occurring semantic concept, from unac-
ceptable ones. Text units assigned to qualitatively unacceptable clusters constitute
the input data set for the next iteration, which in turn starts with a transformation
step. Knowledge discovery is concluded by semi-automatically labeling acceptable
text unit clusters and establishing a conceptual document structure.

7. Implementation: Our KDT process outputs classification knowledge in the form
of frequently recurring semantic concepts at the text unit level. This discovered
knowledge is exploited by means of transforming input text archives into seman-
tically tagged XML documents that conform to a common, concept-based XML
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4 DIAsDEM Knowledge Discovery Process

document type definition. In addition, a parameterized KDT process flow is created
that supports the fully automated markup of thematically similar text documents
in the knowledge application phase of our framework.
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5 DIAsDEM Workbench

Having introduced the DIAsDEM framework for semantic XML tagging of domain-
specific text archives in the preceding two chapters, we henceforth focus on the accompa-
nying research prototype DIAsDEM Workbench. According to the systems develop-
ment research methodology underlying this work (cf. Section 1.5), designing and building
a research prototype is a prerequisite for the thorough evaluation of the proposed con-
ceptual framework. Since Winkler (2007) described DIAsDEM Workbench in detail,
we intentionally present an extended overview in this chapter only. To that end, key
characteristics and the architecture of our research prototype are outlined in the next sec-
tion. Subsequently, we describe the core tasks implemented in our prototype workbench
in Section 5.2. Finally, this chapter is summarized in Section 5.3.

5.1 Key Characteristics and Architecture

This section gives an overview of the key characteristics and the high-level architecture of
DIAsDEM Workbench. Discussing software engineering or implementation aspects in
detail, however, is beyond the scope of this work. The following enumeration outlines the
main features of DIAsDEM Workbench:

• Our research prototype supports the entire DIAsDEM framework for semantic
XML tagging of large, domain-specific text archives. In particular, a graphical user
interface enables domain and KDT experts to interactively work in phase 1, namely,
the semi-automated knowledge discovery phase. Phase 2 of our framework, which
is the fully automated knowledge application phase, is additionally supported by a
command-line batch client. Our central notion of KDT process flows (cf. Defini-
tion 13 on page 61) is operationalized by a workbench-specific scripting language.

• The plug-in concept of DIAsDEM Workbench ensures openness and flexibil-
ity. By providing a plug-in interface to our research prototype, a variety of pre-
processing, pattern discovery, and post-processing algorithms can be easily incorpo-
rated into the workbench. Above all, this plug-in concept enables the economical
re-use of existing, Java-based implementations of algorithms, such as the ones con-
tained in the Weka machine learning library (cf. Witten and Frank, 2005).

• DIAsDEM Workbench is implemented in Java. This object-oriented program-
ming language facilitates the implementation of our framework-specific abstract data
types introduced in the preceding two chapters and defined in Appendix B.
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Figure 5.1: Architectural Overview of DIAsDEM Workbench

• The research prototype, which was designed and predominantly implemented by
the author, is open source software. It is available for download via the Web site
http://ka.rsten-winkler.de/thesis under the GNU general public license.

Architecture Figure 5.1 illustrates the high-level architecture of DIAsDEM Work-
bench, which is a Java-based client/server-application. Solid arrows represent the data
flow whereas dashed arrows indicate the control flow in this figure. Controlled by DIAs-
DEM Workbench GUI Client orDIAsDEM Workbench Batch Script Client,
DIAsDEM Workbench Server executes so-called DIAsDEM Workbench tasks,
each of which encapsulates one dedicated KDT algorithm or a group of related KDT
algorithms. Instances of both clients (i) trigger the execution of tasks by submitting pa-
rameterized requests, (ii) monitor the progress of task execution, and (iii) finally request
metadata describing the results from the respective server instance. By implementing a
set of Java interfaces that realize the plug-in concept, new or existing algorithms can be
easily converted into DIAsDEM Workbench tasks.

During knowledge discovery, the KDT expert initially creates a new KDT process flow.
Subsequently, this process flow is parameterized step-by-step by means of recording all
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Figure 5.2: Screen Shot of DIAsDEM Workbench GUI Client

KDT tasks that are interactively submitted to DIAsDEM Workbench Server by the
expert. For each task, the knowledge discovery specialist inputs required and optional
parameters using a graphical user interface prior to submitting the parameterized task for
execution. Once a task is completely executed, a result metadata container is returned
by the server and displayed for inspection by domain and KDT experts in DIAsDEM
Workbench GUI Client. Existing KDT process flows can be modified, if necessary,
using DIAsDEM Workbench GUI Client. KDT process flows are submitted for
execution by any client application in the knowledge application phase of our framework.
Typically, however, the command-line batch script client is preferred during knowledge
application because this client allows for an automated, even scheduled conversion of text
documents into semantically marked-up XML documents without any human intervention
at all. If DIAsDEM Workbench Server executes a batch script in the non-interactive
way, result metadata are not immediately visualized by the respective client application,
but stored in the KDT process flow for later inspection. Nevertheless, human experts
can examine the results of any automatically executed process flow by opening the corre-
sponding file in DIAsDEM Workbench GUI Client. When processing KDT tasks,
DIAsDEM Workbench Server reads input text archives, stores intermediate text
archives and auxiliary data (e.g., KDT process metadata and conceptual document struc-
tures) in XML files, and finally outputs semantically marked-up XML documents along
with a concept-based XML document type definition.

Figure 5.2 depicts the graphical user interface of DIAsDEM Workbench GUI
Client. Using this client application, knowledge discovery experts manage the entire
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Figure 5.3: Screen Shot of the Replace Named Entities 2.1 Task of DIAsDEM
Workbench GUI Client

knowledge discovery phase by setting up new KDT projects, importing raw text docu-
ments, establishing a domain-specific controlled vocabulary, executing the necessary KDT
tasks and recording them in a batch script, assessing the results of KDT tasks (e.g., the
quality of semantic markup), and eventually exporting a domain-specific, concept-based
XML document type definition and semantically marked-up XML documents. For ex-
ample, Figure 5.3 shows DIAsDEM Workbench GUI Client during the activity of
parameterizing the task Replace Named Entities 2.1. In addition, this figure exem-
plifies the visualization of results as it also depicts a panel that highlights identified named
entities. A recorded KDT process flow and batch script, respectively, can be edited using
the Batch Script Editor tool of DIAsDEM Workbench GUI Client, which is
depicted in Figure 5.4. This figure also shows that batch scripts are XML documents,
which conform to a workbench-specific XML document type definition (see Winkler, 2007,
p. 91).

5.2 Overview of Core Tasks

In this section, we concisely describe fundamental DIAsDEM Workbench Tasks,
which are henceforth synonymously referred to as KDT tasks or tasks in shortened form.
To that end, essential tasks supported by the research prototype are categorized by the
three main phases of our knowledge discovery process (cf. Chapter 4).
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Figure 5.4: Screen Shot of the Batch Script Editor Tool of DIAsDEM Work-
bench GUI Client

5.2.1 Pre-Processing of Text Documents

The KDT tasks outlined in this subsection correspond to the text pre-processing steps
of our knowledge discovery process (cf. Section 4.2). The task that maps text units onto
text unit vectors is described in the next subsection on iterative clustering for the reasons
discussed in Subsection 4.2.5 and in Section 4.5.

Text Document Import The task Import Plain Text Files reads text files from a
user-specified directory and converts them into a text archive according to Definition 3
on page 58. Technically, text files are imported into an intermediate data representation,
the so-called DIAsDEM collection, that comprises XML documents conforming to a
workbench-specific XML DTD (see Winkler, 2007, p. 90). Each DIAsDEM collection is
identified by a collection file containing archive metadata and references to intermediate
XML documents that constitute the collection. Hence, a new collection must be created
using the auxiliary task Create Document Collection (see Winkler, 2007, pp. 18–
19) prior to importing text files into a collection for subsequent processing. The storage
is not limited to a file-based representation. Storing a collection, for example, in an
XML-enabled database requires the implementation of storage-related Java interfaces.

Creation of Text Units As described in Section 4.2.1, the KDT task Create Text
Units transforms the initial text archive into an intermediate text archive (cf. Defini-
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tion 21 on page 75) by identifying and separating text units. The algorithm Heuristic
Sentence Identifier initially replaces full stops in abbreviations (e.g., "e.g."), which
are listed in the parameter file Abbreviations File, with asterisks. Thereafter, regular
expressions listed in the parameter file Full Stop Regex File are matched against the
text. These regular expressions match full stops that are no sentence boundaries (e.g.,
"01.01.2007") and replace all matches with asterisks. All remaining punctuation marks
are heuristically considered to be sentence boundaries that separate text units from each
other. Thereby, text documents are split into sentence-based text units.

In general, our framework comprises the notion of structural views on texts, which are
referred to as text unit layers (cf. Definition 5 on page 59). For example, one might define
three text unit layers to semantically annotate each document at the text level, at the
paragraph level, and at the sentence level. However, DIAsDEM Workbench 2.2 does
not support the hierarchical semantic tagging of text documents. Instead, KDT tasks
always process text units that are associated with one user-specified text unit layer (e.g.,
the sentence level) and output XML documents that are marked up accordingly.

Tokenization of Text Units After importing texts and creating text units, tokenizing
them using the task Tokenize Text Units constitutes the third pre-processing step (see
Subsection 4.2.1). During tokenization, text units are decomposed into individual words
and tokens, respectively. In addition, text units are normalized to map, for example,
date literals appearing in many different formats (e.g., "1 Jan 2007" and "1.1.2007")
onto a canonical representation (e.g., "01.01.2007"). Moreover, multi-token terms that
contain blank spaces, such as "for example", are identified to subsequently process them
as single tokens.

Firstly, regular expressions listed in the parameter file Tokenization Regex File are
matched against each processed text unit. For instance, the character subsequence "e." of
the string "This is a sentence. There" is matched by the regular expression (\S)(\.|
\!|\?). This matching character subsequence is thus substituted by the accompanying re-
placement string $1\ $2, which results in the following tokenized text: "This is a sen-

tence . There". Secondly, regular expressions listed in the parameter file Normalization
Regex File are matched against processed text units. Analogously, matching character
subsequences are substituted by the corresponding replacement string. Thirdly, multi-
token terms included in the parameter file Multi-Token Words File are looked up in text
units. Each identified multi-token term is reduced to one single token by replacing blank
spaces with underscores, such as "for_example".

Extraction of Named Entities After importing text files, creating and tokenizing text
units, identifying named entities and replacing them with placeholders constitutes the
fourth pre-processing step, as described in Subsection 4.2.2. Extracted named entities
potentially serve as attribute values in semantic XML tags. The task Replace Named
Entities 2.1 can be fully parameterized by editing a large number of parameter files. The
heuristic, rule-based named entity extractor is inspired by Feldman et al. (1999), Agichtein
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and Gravano (2000), Brüninghaus and Ashley (2001), Volk and Clematide (2001), as well
as Sekine et al. (2002). The prototypical extractor works as follows:

1. Firstly, regular expressions listed in the parameter file Regex NE File are matched
against intermediate text units to identify instances of the following named en-
tity types, which are referred to as basic named entities: number, date, time,
amount of money, paragraph, email, url, organization id, document id, court, post-
al code, reference number, percentage, newspaper, stock exchange, isin (i.e., inter-
national securities identification number), wkn (i.e., German securities identification
number), number of shares, and amount of money per share.

2. Secondly, instances of the basic named entity type organization are identified by
employing the parameter files Organization Indicators File, Organization Suffixes
File, Organization Affixes File, and Organizations File. The latter file contains a
list of complete, tokenized names of important organizations that are extracted in
any case. To heuristically extract less important organization names, the algorithm
initially searches for known organization name suffix tokens (e.g., "Ltd.") and then
looks backwards for valid organization indicator tokens, such as "takeover of", to
instantiate a named entity of type organization. Subsequently, identified organiza-
tion names are extended if they are followed by organization name affix tokens (e.g.,
"Worldwide") listed in the respective parameter file.

3. Thirdly, tokens or sequences thereof instantiating the basic named entity type place
are extracted using the parameter files Place Indicators File, Places File, and Place
Affixes File. The algorithm first looks up all tokens in the dictionary of known
places comprising, for example, countries like "Germany" and cities like "Berlin".
Subsequently, place candidate tokens are extended if they are immediately followed
by another known place or a place affix token, such as "Airport". However, even
place candidates are only instantiated as named entities of type place if they are
directly preceded by a known place indicator token, such as "in" or "to".

4. Thereafter, the parameter files Person Name Indicators File, Titles File, Forenames
File, Middle Initials File, Surnames File, Surname Suffixes File, and Name Affixes
File are used to discover instances of basic named entity type person name. Each in-
stance corresponds to a contiguous sequence of tokens, each of which instantiates one
of the following basic named entity types: academic title (e.g., "Dr."), forename,
middle initial, surname, or name affix (e.g., "Sen."). Composite forenames and
surnames comprising a hyphen are also identified. Person name candidates are ex-
tended if they are immediately followed by a known name affix token or a capitalized
token ending with a known surname suffix listed in Surname Suffixes File. How-
ever, single-token person name candidates are only instantiated if they are directly
preceded by a person name indicator token contained in the respective parameter
file. If the optional parameter Professions File is specified, instances of basic named
entity type profession are identified in text units that contain at least one instance
of named entity type person name.
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5. Constructor rules, which are specified in a workbench-specific syntax in the param-
eter file Composite NE File, are finally applied to intermediate text units that con-
tain identified basic named entities to discover instances of the following composite
named entities: person, company, company relocation, date period, equity stake,
amount of money range, percentage range, unit of company, and key figure. Each
composite named entity consists of basic named entities that occur in the context
of tokens defined by constructor rules. For instance, composite named entities of
type person can be constructed from the basic named entities person name, date,
and place. If a composite named entity is identified, both ordinary tokens and
basic named entity placeholders matched by the rule are substituted by the corre-
sponding composite named entity placeholder. Adding the exemplary rule <<per-

son_name>> geb. <<person_name>> , <<date>> , <<place>> to match tokens
and instances of basic named entities along with an appropriate constructor state-
ment to Composite NE File maps, for instance, the German token sequence "Marion
Marcella Adolph geb. Priester , 22.03.1957 , Offenbach" onto an instance
of the composite named entity type person.

In general, each token might simultaneously instantiate various basic named entities.
For instance, the token "Hagen" could be a German forename or a German city. Thus,
various heuristics are used in conjunction with the parameter files Person Name Indicators
File and Place Indicators File to decide whether a particular token probably instantiates
a place or is more likely a partial person name.

Lemmatization of Text Units In accordance with Subsection 4.2.3, the prototypical
task Lemmatize Text Units determines grammatical roots of terms (i.e., their lemma
forms) and subsequently replaces terms in intermediate text units with their respective
lemma forms. For example, inflected verb forms (e.g., "went") are mapped onto their
infinite forms (e.g., "go"). This task employs TreeTagger to automatically determine
lemma forms. TreeTagger is a multi-lingual part-of-speech tagger developed by Schmid
(1994, 1999), which can be used free of charge for research purposes. More specifically,
intermediate text units are exported in the file format required by TreeTagger, the
part-of-speech tagger is afterwards executed to annotate the generated text file, and the
results are finally imported to update the intermediate text archive accordingly. The KDT
expert is able to parameterize the temporary input file name, the temporary output file
name, and the TreeTagger command to be executed.

Word Sense Disambiguation The prototypical task Disambiguate Word Senses
heuristically determines the sense of ambiguous words (cf. Subsection 4.2.3). Its embed-
ded algorithm is inspired by the method referred to as disambiguation based on sense defi-
nitions (cf. Manning and Schütze, 1999, pp. 242-244). Potentially ambiguous tokens, such
as "interest" in the mergers and acquisitions domain, are heuristically disambiguated
based on the occurrence of contextual sense indicator tokens in the same intermediate
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Figure 5.5: Screen Shot of the Thesaurus Editor Tool of DIAsDEM Workbench
GUI Client

text unit or in an even smaller, user-specified set of neighboring tokens. For example,
the sense identifier "/s:stake" is appended to the token "interest" to form the new
token "interest/s:stake" if at least one of the lemmatized sense indicator tokens "ac-
quisition", "acquire, or "merge" occurs in the same intermediate text unit. Hence,
sense indicator tokens serve as concise sense definitions for their associated token. If
additional indicator tokens were defined for the relevant senses "/s:involvement" and
"/s:borrowing" of the token "interest", a voting schema would determine the most
likely sense of the ambiguous token. Placeholders for named entity types may serve as
sense indicator tokens as well. All tokens to be disambiguated along with the respective
senses and their indicator terms are specified in the Word Senses File.

Establishment of the Controlled Vocabulary Before applying our framework to a new
domain, an appropriate controlled vocabulary is semi-automatically created in the pre-
processing phase of our knowledge discovery process (see Subsection 4.2.4). To that
end, the task Establish Initial Thesaurus creates a new thesaurus on the basis of
term frequency statistics computed by the auxiliary task Compute Term Frequency
Statistics. Terms are inserted into the new thesaurus as descriptor terms if their abso-
lute frequency is greater than or equal to a minimum threshold and less than or equal to
a maximum threshold. After establishing an initial thesaurus, the domain expert refines
this thesaurus by using the Thesaurus Editor tool depicted in Figure 5.5. In par-
ticular, semantically less important terms are deleted from the thesaurus. Furthermore,
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the domain expert takes into account the semantics of terms and concepts by defining
relations between less important non-descriptors and associated descriptors.

5.2.2 Iterative Clustering of Text Unit Vectors

This subsection describes tasks of DIAsDEM Workbench that are executed during
each iteration of the knowledge discovery phase (cf. Subsection 4.3.4). A few tasks are
executed in the knowledge application phase of our framework as well (cf. Section 4.5).

Vectorization of Text Units The task Vectorize Text Units 2.2 transforms text
units into text unit vectors (cf. Subsection 4.2.5). To that end, the KDT expert specifies
the KDT Process Iteration number, name and type of the Text Unit Vectors File to be
exported for consumption by the clustering task, and a domain-specific Thesaurus File. A
weighting scheme is chosen and parameterized during knowledge discovery. The default
weighting scheme, however, corresponds to Expression 4.1 on page 96 with a Boolean
term frequency component, an inverse text unit frequency as the collection frequency
component, and no vector length normalization component at all. As explained in Sub-
section 4.2.5, the iteration-specific collection frequency components of descriptor weights
are computed once in the interactive KDT phase and merely used in the application
phase. During knowledge discovery, computed collection frequencies are thus stored in
the user-specified Collection Frequencies File as part of the iteration metadata. Collection
frequencies are retrieved from this file during knowledge application.

Selecting, Parameterizing, and Executing a Clustering Algorithm In accordance with
Subsection 4.3.4, the task Cluster Text Unit Vectors (hypKNOWsys1) allows the
KDT expert to select an appropriate clustering algorithm, parameterize it, and execute
the algorithm both in discovery and application mode. This task utilizes and extends the
Java-based data mining library Weka (cf. Witten and Frank, 2005). Along with various
data pre-processing and machine learning algorithms, Weka includes three clustering
algorithms (i.e., k-means, Cobweb, and EM). Due to their poor performance on large
data sets in discovery mode, the missing support of common cluster validity indices, and
the necessity to process data sets inside the main memory in application mode, however,
the author decided to implement the algorithms discussed in Subsection 4.3.2 within the
Weka framework. The bisecting k-means algorithm (Steinbach et al., 2000), the Batch
Map algorithm, (Kohonen, 2001, pp. 139–140), and the SNN clustering algorithm (Ertöz
et al., 2004) satisfy most requirements for usage in our framework and simultaneously
represent three distinct approaches to clustering textual data. All algorithms are exe-
cutable in application mode by means of utilizing the Java-inherent object persistence
mechanism. For each clustering algorithm, the necessary parameters are entered by the

1The open source software project hypKNOWsys hosts the development of DIAsDEM Workbench.
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Figure 5.6: Screen Shot of the Cluster Text Unit Vectors (hypKNOWsys) Task
of DIAsDEM Workbench GUI Client

knowledge discovery expert. In addition, the task Cluster Text Unit Vectors (hyp-
KNOWsys) encapsulates all proximity measures discussed in Subsection 4.3.1 such that
the KDT expert is able to select an appropriate combination of clustering algorithm and
proximity measure. Furthermore, this task computes the five common relative cluster
validity indices listed in Table 4.12 on page 106. Figure 5.6 illustrates the user interface
of this task and the visualization of results.

Automatic Ranking of Text Unit Clusters and Automatic Default Labeling of Accept-
able Clusters Subsequent to clustering text unit vectors during knowledge discovery, the
task Monitor Cluster Quality 2.2 automatically ranks the resulting clusters by de-
creasing quality (cf. Subsection 4.3.3) and additionally generates default labels of all qual-
itatively acceptable clusters (cf. Subsection 4.4.1). For performance reasons, this task exe-
cutes the operations in line 4 (i.e., automatic creation of cluster ranking) and in line 6 (i.e.,
automated labeling of acceptable clusters) of Algorithm 4.5 (PerformClusteringIteration)
on page 138 in one pass over the intermediate text archive. Thereby, clusters that are con-
sidered to be acceptable in the first place are semantically labeled by default. This task is
not executed during the knowledge application phase of our framework. Prior to executing
this task, the KDT expert inputs, among other parameters, the name of the Cluster Label
File that is part of the iteration metadata and contains all generated semantic cluster
labels. The cluster quality parameters explained in Subsection 4.3.3 are set by the KDT
specialist to define the minimum requirements to be met by qualitatively acceptable clus-
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Figure 5.7: Visualization of Text Unit Clustering Created by the Monitor Cluster
Quality 2.2 Task of DIAsDEM Workbench GUI Client

ters. Besides outputting a quality assessment for each text unit cluster and generating a
Cluster Label File comprising default labels for acceptable clusters, the task Monitor
Cluster Quality 2.2 creates HTML-based visualizations of the entire clustering and
each individual cluster. Figures 5.7 and 5.8 depict automatically generated visualizations,
which enable a quick and intuitive content characterization while interactively reviewing
cluster labels.

Interactive Screening of Cluster Ranking and Interactive Review of Default Cluster
Labels During knowledge discovery, automatically generated cluster quality assessments
and default cluster labels can be interactively reviewed and modified, if necessary. To
that end, the domain expert employs the Cluster Label Editor tool of DIAsDEM
Workbench. As discussed in Subsection 4.4.1, the domain specialist is asked to inspect
text units assigned to a cluster, or a sample thereof, in combination with cluster-specific
frequency statistics of both text unit descriptors and terms not covered by the controlled
vocabulary. Supported by cluster visualizations created by the task Monitor Cluster
Quality 2.2, default cluster labels can be efficiently corrected. Furthermore, the Clus-
ter Label Editor tool enables the human expert to interactively screen the cluster
ranking and, if necessary, to manually override automatically created cluster quality as-
sessments (cf. Subsection 4.3.4). The Cluster Label Editor tool is not used in the
knowledge application phase of our framework.
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Figure 5.8: Visualization of Text Unit Cluster Created by the Monitor Cluster
Quality 2.2 Task of DIAsDEM Workbench GUI Client

Update of the Intermediate Text Archive At the end of each clustering and classifi-
cation iteration, the task Tag Text Units is executed to persistently store the results
in the intermediate text archive. This task updates the iteration identifier, the cluster
identifier, as well as the assigned semantic cluster label and concept, respectively, of all in-
termediate text units that have not yet been assigned to a qualitatively acceptable cluster
according to the cluster assignments at the beginning of the current iteration.

5.2.3 Post-Processing of Discovered Patterns

This subsection describes two core KDT tasks that post-process discovered patterns.

Establishment of the Concept-Based XML DTD Subsequent to the final clustering
iteration of the knowledge discovery process, the DIAsDEM Workbench task Derive
Conceptual DTD 2.2 establishes a concept-based XML document type definition in ac-
cordance with Subsection 4.4.2 on page 138. Prior to executing this task, the KDT expert
specifies the name of the DTD root element, the required minimum attribute support, as
well as the name of the Conceptual DTD File and the HTML-based DTD Documentation
File to be generated. Once a new concept-based XML DTD is generated, the metadata
file referred to as Conceptual DTD File comprises the domain-specific conceptual docu-
ment structure, which is utilized when creating semantically marked-up XML documents
during both knowledge discovery and knowledge application. The new concept-based
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Figure 5.9: Screen Shot of the Derive Conceptual DTD 2.2 Task of DIAsDEM
Workbench GUI Client

XML document type definition (e.g., NewsItem.dtd) is named in correspondence with its
root element (e.g., NewsItem). Furthermore, the automatically generated DTD documen-
tation template contains an enumeration of valid attributes and five exemplary text units
for each DTD element. Figure 5.9 depicts a screen shot of the task Derive Conceptual
DTD 2.2 along with a generated XML DTD. The task is not executed in the knowledge
application phase.

Semantic XML Tagging of Text Documents The final step in both knowledge discov-
ery and knowledge application, namely, the semantic XML tagging of text documents, is
performed by the task Tag Documents 2.2 (cf. Subsection 4.4.3 on page 143). Given a
Conceptual DTD File comprising the domain-specific conceptual document structure es-
tablished by the task Derive Conceptual DTD 2.2, the entire original text archive is
converted into semantically marked-up XML documents conforming to the corresponding
concept-based XML document type definition. In addition, the supplementary Random
Sample File contains a random sample of text units for the subsequent evaluation of
markup quality (cf. Section 6.1) as a result of executing this task. The random sample
size is specified by the knowledge discovery expert.
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5.3 Summary

The open source research prototype DIAsDEM Workbench has been described in
this chapter. Our workbench supports the entire DIAsDEM framework for semantic
tagging of domain-specific text archives: the interactive knowledge discovery phase and
the automated, batch-oriented knowledge application phase. Our notion of KDT process
flows as a link between both phases is operationalized by a workbench-specific scripting
language. The Java-based client/server-application comprises a server component that
executes DIAsDEM Workbench tasks as requested by client applications. Each task
encapsulates a KDT algorithm or a group of similar ones. The implemented plug-in con-
cept for tasks ensures openness, flexibility, and re-usability of existing implementations of
algorithms. The graphical user interface client application facilitates the iterative, inter-
active knowledge discovery process and simultaneously records submitted tasks in editable
batch scripts. In addition, the batch script client is capable of automatically executing
batch scripts during knowledge application. Consequently, DIAsDEM Workbench
enables the thorough evaluation of our conceptual framework as part of the systems de-
velopment research methodology underlying this work.
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The research methodology underlying this work, systems development as proposed by
Nunamaker et al. (1991), has been summarized in Section 1.5. Following the introduction
of our conceptual framework for semantic XML tagging and the description of our research
prototype in the preceding three chapters, we henceforth elaborate on the experimental
evaluation of the DIAsDEM framework in the experimentation/observation phase of the
generic systems development research process. In the next section, we describe criteria
designed to measure the quality of semantic XML markup. Section 6.2 presents the results
of using DIAsDEM Workbench to semantically enhance two real-word text archives
from the competitive intelligence domain. This chapter is summarized in Section 6.3.

6.1 Assessing the Quality of Semantic XML Markup

“For prediction problems,” Weiss et al. (2005, p. 123) emphasized in the context of knowl-
edge discovery in textual databases, “evaluation is straightforward.” Given a class-labeled
text archive, classifier performance is in principle measured by classifying documents not
utilized in the training procedure and comparing the predicted class memberships with
their true, a priori known classes. This standard approach to assessing the quality of su-
pervised learning techniques (e.g., cf. Vazirgiannis et al., 2003, pp. 76–82), however, cannot
be employed in the DIAsDEM framework because unsupervised learning, or clustering,
is employed to semantically annotate plain, a priori unlabeled texts.

In information retrieval research, the evaluation of retrieval systems is also an important
issue (e.g., see Baeza-Yates and Ribeiro-Neto, 1999, pp. 73–97). The notion of retrieval
performance evaluation refers to assessing the relevance of documents retrieved in response
to a user’s query. To measure retrieval effectiveness, recall and precision, along with
measures derived thereof, are conventionally employed (cf. Grossman and Frieder, 2004,
pp. 2–5). Baeza-Yates and Ribeiro-Neto emphasized that assessing retrieval performance
typically involves experiments performed in laboratories because the set of truly relevant
documents for certain queries is needed in advance. Since costly resources for creating
topic-labeled test collections are mostly scarce, research into information retrieval tends to
resort to using carefully crafted reference corpora whose texts are already assigned topic
identifiers (cf. Baeza-Yates and Ribeiro-Neto, 1999, pp. 84–96). For example, Agrawal
et al. (2000), Steinbach et al. (2000), and Weiss et al. (2005, p. 171–178) utilized standard
IR collections when addressing knowledge discovery tasks. As the discussion on descriptor
weighting in Subsection 4.2.5 has revealed, standard IR collections along with precision
and recall measures cannot be used for quality evaluation in our framework because we
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strive for exploratively discovering new, a priori unknown semantic concepts at the text
unit level. Due to our unsupervised learning approach, an automated computation of recall
or precision measures necessitates the manual mark-up of plain texts in conformance with
the established concept-based XML DTD.

Without doubt, we cannot assume the availability of costly human markup resources
to annotate the entire training collection. Unlike standardized studies in measuring the
effectiveness of information retrieval techniques, we cannot leverage common IR reference
collections as they are not marked-up at the level of structural text units. Analogous to
Castellanos (2004, p. 154), human domain expertise is hence essential in evaluating the
quality of semantic XML markup in our framework. Therefore, we suggest drawing a
random sample of semantically marked-up text units and ask a domain expert to assess
the markup quality, as defined in detail in the next subsection. By limiting the quality
evaluation to a random sample of processed text units, we reduce human involvement on
the one hand and ensure statistically valid statements concerning markup quality on the
other. Requirements for effective software support of domain experts, who perform the
quality assessment, are briefly described in Subsection 6.1.2.

In particular, we acknowledge the “inherent degree of psychological subjectiveness” as-
sociated with the task of quality evaluation as noticed, for example, by Baeza-Yates and
Ribeiro-Neto (1999, p. 84). For instance, the results of experiments on human performance
on a clustering task conducted by Macskassy et al. (1998, p. 264) provided a“sobering note
on any quest for a single clearly correct clustering method for web pages.” When conduct-
ing experiments on marking up resources for the Semantic Web (cf. Section 1.3), Forno
(2003) observed that human taggers often assigned different descriptive tags from a finite
set to the same resource. In this work, we assume that the markup quality is assessed by
exactly one domain expert. Thereby we avoid inconsistencies introduced by asking several
humans to evaluate the same processed text unit. Furthermore, we abstract from possible
inconsistencies introduced by different assessments of the same processed text unit by
one domain expert. These assumptions can be relaxed by incorporating social science
techniques designed to measure the so-called inter-tagger agreement (cf. Fellbaum, 1998,
pp. 217–237), as well as the so-called inter-coder and intra-coder reliability (cf. Bayerl
et al., 2003b).

6.1.1 Quality Criteria for Semantic XML Markup

The quality assessment of semantic XML markup involves detecting two distinct issues.
Firstly, the derived concept-based XML document type definition might not be appropri-
ate to describe the semantic content of the domain under scrutiny. Secondly, marked-up
text units may be erroneously annotated. In this work, however, we focus solely on the
evaluation of marked-up content with respect to the latter error. Since our DIAsDEM
framework intentionally incorporates human domain knowledge (cf. Section 4.6), it is
reasonable to assume that a derived concept-based XML document type definition appro-
priately reflects the most important, frequently recurring concepts at the text unit level.
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After all, labels of qualitatively acceptable text unit clusters and names of XML tags,
respectively, are semi-automatically assigned and interactively reviewed. Consequently,
we advocate a quality assessment from the perspective of users of semantically marked-up
XML documents who take the corresponding DTD as given. The distinction between
correct and erroneous markup therefore solely requires comparing a random sample of au-
tomatically generated markup with the correct markup that would have been assigned by
a human annotator, who is only allowed to select tags from the concept-based DTD. We
initially elaborate on measuring the quality of XML tag names and concepts, respectively.
Subsequently, our notion of markup quality is discussed in the context of evaluating XML
tag attributes and extracted named entities, respectively.

Quality of XML Tag Names As explained in Subsection 4.4.3, both tagged and plain
text units are typically contained in semantically marked-up XML documents. The former
are enclosed in semantic XML tags, which optionally comprise attributes, whereas plain
text units are not annotated at all. Analogous to text classification (e.g., cf. Sebastiani,
2002, pp. 32–33), the following four mutually exclusive and collectively exhaustive cases
are relevant when evaluating the correctness of XML tag names with respect to a given
concept-based XML document type definition:

• True Positive: Text units enclosed in semantic XML tags are true positives if their
tag names represent correct concepts that domain experts typically associate with
the respective, marked-up text units.

• False Positive: If the semantic XML tag enclosing a text unit does not correspond to
the concept that domain experts typically associate with the marked-up text unit,
a false positive occurs.

• True Negative: A plain text unit not enclosed in a semantic XML tag is a true
negative if the concept-based XML document type definition does not comprise a
tag for the concept that domain experts typically associate with this text unit.

• False Negative: A false negative occurs when a plain text unit, which is not enclosed
in a semantic XML tag, in fact represents a semantic concept that is listed in the
concept-based XML document type definition.

To summarize, the term positive (and negative, respectively) refers to marked-up (and
plain, respectively) text units in semantically tagged XML documents. Furthermore,
the term true designates correctly marked-up text units whereas the term false indicates
erroneous markup. Here, the notion of markup refers to both positives and negatives.

Considering the concept-based XML document type definition established for our ex-
ample archive listed in Table 4.28 on page 141, Table 6.1 illustrates these four cases. The
first sentence is a true positive because it is marked up with the correct XML tag from the
DTD. The tag name SaleOfBusinessUnit corresponds to a concept that domain experts
typically associate with the exemplary sentence. It is particularly noteworthy that the
correctness of XML tag attributes and extracted named entities, respectively, is irrelevant
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Table 6.1: Four Sentences Illustrating the Types of XML Tag Names w.r.t. Markup Qual-
ity

True Positive: <SaleOfBusinessUnit Company="ID: 1; Name: Modtech">USA: Miller to

sell unit to Modtech.</SaleOfBusinessUnit>

False Positive: <SaleOfBusinessUnit>In 1995, the unit’s net sales were

$230 million.</SaleOfBusinessUnit>

True Negative: The total acquisition value will be about $48 million, payable

in Occidental common stock.

False Negative: Final settlement is scheduled for October 21, Miller said.

when evaluating the quality of XML tag names. In the first sentence of Table 6.1, failing
to extract the company name Miller does not change the true positive status at all.
The second sentence1 listed in this table illustrates the false positive case since its XML
tag name SaleOfBusinessUnit does not correspond to the true concept, as perceived by
domain experts. Sentence three in Table 6.1 illustrates the true negative case because
the DTD does not contain an XML tag whose name represents an appropriate semantic
concept. In contrast, the fourth sentence in this table is a false negative since the DTD
contains an appropriate XML tag (i.e., ExpectedDealClosing).

Given a random sample comprising s ∈ N semantically marked-up text units drawn
without replacement from a semantically marked-up text archive, let nTP ∈ N ∪ 0 denote
the number of true positives in the sample according to the quality assessment performed
by a domain expert. Analogously, let nFP, nTN, nFN ∈ N ∪ 0 denote the number of false
positives, true negatives, and false negatives, respectively, identified by a human expert in
the random sample such that nTP+nFP+nTN+nFN = s. In analogy with common practice
in text classification as noted, for example, by Sebastiani (2002, pp. 32–33) and Weiss
et al. (2005, pp. 77–80), we introduce three measures of semantic XML markup quality
and their approximate 95% confidence intervals. The latter are defined in correspondence
with Ester and Sander (2000, pp. 110-111) as well as Evert (2004):

• XML tag name accuracy, estimated as âTagName := (nTP + nTN)/s, simultaneously
considers the markup correctness of both text units enclosed in semantic XML tags
and plain text units in a semantically marked-up text archive. For sufficiently large
values of s ≫ 0, the approximate 95% confidence interval of XML tag name accuracy
is âTagName ± 1.96 ·

√

âTagName · (1 − âTagName)/s.
• XML tag name precision, estimated as p̂TagName := nTP/(nTP +nFP), focuses on the

markup correctness of text units enclosed in semantic XML tags in a semantically
marked-up text archive. Given a text unit is enclosed in semantic XML tags, it
denotes the probability that the respective XML tag is correct. For sufficiently

1Since the running example does not contain any false positives at all, the second sentence in Table 6.1
is not part of the exemplary training archive shown in Table 4.1. It is sentence 7 of news item 127801
of Reuters Corpus, Volume 1, English Language, 1996-08-20 to 1997-08-19 (cf. Rose et al., 2002).
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large values of (nTP + nFP) ≫ 0, the approximate 95% confidence interval of XML
tag name precision is p̂TagName ± 1.96 ·

√

p̂TagName · (1 − p̂TagName)/(nTP + nFP).
• XML tag name recall, estimated as r̂TagName := nTP/(nTP + nFN), measures the

success in identifying concepts defined by the corresponding concept-based XML
DTD. It is the ratio of text units enclosed in correct semantic XML tags to the total
number of text units representing concepts that are defined in the XML DTD. For
sufficiently large values of (nTP+nFN) ≫ 0, the approximate 95% confidence interval
of XML tag name recall is r̂TagName ± 1.96 ·

√

r̂TagName · (1 − r̂TagName)/(nTP + nFN).

As each measure emphasizes a specific aspect of markup quality, an overall assessment
requires considering them in combination. In this work, we intentionally define XML
tag name accuracy, precision, and recall with respect to the overall population of text
units in a semantically marked-up text archive. Therefore, these three measures are not
specific to certain XML tag names, but rather reflect their average quality. If necessary,
this approach may of course be extended to assess the quality of particular text unit
sub-populations featuring, for example, a specific semantic concept.

Quality of XML Tag Attributes Analogous to evaluating the quality of XML tag names,
the correctness of XML tag attributes and extracted named entities, respectively, is as-
sessed against the concept-based XML document type definition. Unlike research in gen-
eral information extraction (cf. Subsection 2.1.3), the DIAsDEM framework thus only
requires determining the quality of named entity extraction within text units enclosed
in semantic XML tags. To that end, we furthermore restrict the assessment to named
entities in marked-up text units whose types correspond to tag-specific attributes defined
in the corresponding concept-based XML DTD. Reconsidering the exemplary XML DTD
depicted in Table 4.28 on page 141, the XML tag AgreementOnUnitSale has two optional
attributes named Company and Place. Consequently, the quality assessment of named
entities occurring within text units marked up with the tag AgreementOnUnitSale is
limited to companies and places only.

Analogous to the assessment of information extraction as performed in the seminal
GATE project (cf. Maynard et al., 2001; Cunningham et al., 2002, pp. 114–115), we
distinguish four mutually exclusive and collectively exhaustive types of identified named
entities within XML tag attributes.

• Completely Correct Named Entity : If an attribute value comprises all components
of a named entity without any extraction flaws, it is considered to be completely
correct. In line 7 of Table 4.31 on page 146, for instance, the value ID: 6; Name:

Miller Building Systems Inc of attribute Company illustrates a completely cor-
rect named entity since the company-specific information is properly extracted.

• Partially Correct Named Entity : If an attribute value does not contain a few tokens
of the corresponding, typically complex named entity without conveying erroneous
information (e.g., concerning its type), it is partially correct. The value ID: 7;
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Name: Miller Structures Inc of attribute Company in line 7 of Table 4.31 serves
as an example of this case. Although the mentioned location of this company (i.e.,
California) is not extracted, the identified information about its name is correct.

• Incorrect Named Entity : If an attribute value conveys erroneous information about
a named entity, it represents an incorrect named entity. In line 7 of Table 4.31, the
attribute Place="California" represents an incorrect named entity. This place
refers to a named entity that is not a stand-alone place, but rather an integral part
of the partially correct company ID: 7; Name: Miller Structures Inc.

• Missing Named Entity : An existing named entity, whose type is listed in the tag-
specific XML DTD attribute list, is considered to be a missing one if this entity is
not referenced by an attribute. For example, the missing named entity Miller is
mentioned in line 6 of Table 4.31, but it is not contained in the attribute Company

of the XML tag <SaleOfBusinessUnit Company="ID: 1; Name: Modtech">.

In a random sample comprising s ∈ N semantically marked-up text units drawn to
assess the quality of XML tag names, let nNE ∈ N∪ 0 denote the true number of relevant
named entities occurring in the subset of text units enclosed in semantic XML tags.
When determining nNE, a named entity occurring in marked-up content is considered
only if its named entity type corresponds to a valid XML attribute name of the enclosing
semantic XML tag. Furthermore, let nCC, nPC, nI, nM ∈ N ∪ 0 denote the number of
completely correct, partially correct, incorrect, and missing, respectively, named entities
in the sample according to the quality assessment performed by a domain expert such
that nNE ≤ nCC + nPC + nI + nM ≤ nNE + nI.

Again following Maynard et al. (2001) and Cunningham et al. (2002, pp. 114–115), the
following three measures and their approximate 95% confidence intervals are employed to
assess the quality of named entity extraction within our framework. Confidence intervals
are defined in analogy with Ester and Sander (2000, pp. 110-111) as well as Evert (2004).

• XML attribute accuracy, estimated as âAttribute := (nCC + 1/2 · nPC)/nNE, is defined
as the proportion of accurately extracted named entities over all relevant named
entities. Thereby, partially correct named entities are assigned a correctness weight
of 1/2, which of course is arguable. For sufficiently large values of nNE ≫ 0, the
approximate 95% confidence interval of XML attribute accuracy is âAttribute ± 1.96 ·
√

âAttribute · (1 − âAttribute)/nNE.
• XML attribute precision, estimated as p̂Attribute := (nCC + 1/2 · nPC)/(nCC + 1/2 ·

nPC + nI), is the ratio of correctly extracted named entities over all identified ones.
Hence, it measures the accuracy of extracted named entities without considering
any missed ones. For sufficiently large values of (nCC + 1/2 · nPC + nI) ≫ 0, the
approximate 95% confidence interval of XML attribute precision is p̂Attribute ± 1.96 ·
√

p̂Attribute · (1 − p̂Attribute)/(nCC + 1/2 · nPC + nI).
• XML attribute recall, estimated as r̂Attribute := (nCC + 1/2 · nPC)/(nCC + 1/2 · nPC +

nM), is defined as the proportion of correctly extracted named entities over all
existing ones. The higher this measure, the better the system in not missing relevant
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named entities. For sufficiently large values of (nCC + 1/2 · nPC + nM) ≫ 0, the
approximate 95% confidence interval of XML attribute recall is r̂Attribute ± 1.96 ·
√

r̂Attribute · (1 − r̂Attribute)/(nCC + 1/2 · nPC + nM).

Each measure emphasizes a different aspect of XML tag attribute quality. Therefore,
they shall be analyzed in combination to ensure a thorough assessment. Analogous to
evaluating the quality of XML tag names, the quality of attributes is not assessed in a
type-specific or even tag-specific way. According to the above definitions, XML attribute
accuracy, precision, and recall are rather average measures of quality taking all relevant,
identified named entity types in consideration. Computing type-specific or tag-specific
measures of XML attribute quality, however, and thereby overcoming this intentional
simplification is straightforward.

6.1.2 Extending DIAsDEM Workbench

Due to the necessary incorporation of human domain expertise into our markup quality
assessment procedure, an effective software support of the entire evaluation process is
paramount to minimize the required human efforts and to ensure statistically valid re-
sults. Therefore, DIAsDEM Workbench facilitates the experimental evaluation of our
framework for semantic XML tagging by means of two extensions.

Firstly, a random sample of semantically marked-up text units is created during the
process of transforming an intermediate text archive into a semantically marked-up one.
Given the desired sample size, each semantically marked-up text unit, whether or not it
is actually enclosed in semantic XML tags, has the same chance of being drawn into the
sample without replacement. If requested, a random sample of semantically marked-up
text units is drawn during knowledge application as well.

Having drawn a random text unit sample, the workbench tool Tagging Quality
Evaluator 2.2 secondly facilitates the interactive assessment procedure performed by
a domain expert. Depicted in Figure 6.1, this tool effectively supports an interactive
quality assessment of semantic XML markup. More specifically, the human expert is asked
to evaluate the markup of one semantically marked-up text unit after the other. Each
text unit in the random sample is displayed exactly as contained in the corresponding
semantically marked-up XML document. Based on his or her expertise, the domain
expert evaluates the correctness of the (possibly non-existing) XML tag name with respect
to the accompanying concept-based DTD, which can be viewed instantaneously. If the
automatically assigned XML tag name is incorrect, the correct one from the finite tag set
in the concept-based DTD is input as well. For text units enclosed in semantic XML tags,
the domain expert is further asked to assess the performance in extracting the relevant
named entities. To that end, the true number of relevant named entities, as well as the
number of correct, partially correct, incorrect, and missing named entities is input for each
XML attribute that is listed in the tag-specific DTD attribute definition. In addition, all
evaluation results are persistently stored, the entire process can be stopped and resumed at
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Figure 6.1: Screen Shot of the Tagging Quality Evaluator 2.2 Tool of DIAsDEM
Workbench GUI Client

any time, all assessment decisions are documented in a protocol, and the markup quality
measures defined in this section are finally computed for the entire random sample.

6.2 Real-World Applications of the DIAsDEM Framework

This section describes in detail the design and the results of two case studies conducted
to evaluate our framework for semantic XML tagging of large, domain-specific text collec-
tions. Since both real-world case studies aim at semantically enhancing publicly available
text archives to aquire actionable knowledge for competitive intelligence applications,
we initially outline this application domain in Subsection 6.2.1. The case study on trans-
forming a large collection of German Commercial Register entries into semantically tagged
XML documents is presented in the subsequent subsection. In Subsection 6.2.3, we dis-
cuss the second experiment conducted to semantically mark up English news items about
United States mergers and acquisitions.

6.2.1 Semantic XML Markup for Competitive Intelligence

In his seminal work on competitive strategy, Porter (1980b, p. 47) emphasized “that a
central aspect of strategy formulation is perceptive competitor analysis.” In the past
decades, Porter’s competitor analysis has gradually evolved into the more holistic notion
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of competitive intelligence (e.g., cf. Kahaner, 1997; West, 1999; Vedder et al., 1999). This
term denotes both the process of conducting a competitive analysis and the resulting
actionable information (Herring, 1988, p. 5). As an integral phase in the strategic man-
agement process, a thorough competitive analysis encompasses the systematic, legal and
ethical collection, storage, and analysis of publicly available information about current
and potential competitors, other stakeholders, and the environment to anticipate trends
and strategic moves (Winkler, 2003, pp. 4–5).

“To be effective,” Porter (1980b, pp. 71–74) noted, “there is the need for an orga-
nized mechanism—some sort of competitor intelligence system—to insure the process is
efficient.” Taking an information systems perspective, Winkler (2003) established a con-
ceptual framework for competitive intelligence information systems that considers their
users, the respective process, and necessary data. Due to the large number of publicly
available and highly relevant textual resources (e.g., cf. Sullivan, 2001, pp. 413–416),
a competitive analysis strongly depends on leveraging computer-accessible texts about
trends and stakeholders. Consequently, a competitive intelligence information system
shall adequately support the analysis of text archives. In this context, Sullivan (2001,
pp. 407–436), Chen et al. (2002), Gerdes Jr. (2003), Weiss et al. (2005, pp. 157–162),
Glance et al. (2005), as well as Feldman and Sanger (2007, pp. 279–295) successfully
employed knowledge discovery methods to respond to competitive intelligence challenges.

Many large archives, which are highly relevant for competitive intelligence purposes
(e.g., business news stories or quarterly reports to shareholders), do not contain text
documents covering a variety of topics, but instead comprise domain-specific text docu-
ments of relatively homogeneous content. Although focusing on the same central topic,
documents contained in these kinds of thematic collections often feature many different
specialized, but nonetheless frequently recurring, subtopics at the sentence or paragraph
level. If a text archive indeed exhibits a thematic clustering tendency at the sentence or
paragraph level, our proposed DIAsDEM framework for semantic XML tagging is appli-
cable to semantically enhance the collection. To experimentally assess our framework, two
real-world text archives were chosen that exhibit a clustering tendency at the sentence
level. Commercial Register entries and news items on mergers and acquisitions are of
great importance when conducting a thorough competitive analysis. Since these sources
of information about current and potential competitors are continuously published on a
large scale, automatically converting them into semantically marked-up XML documents
provides the benefits outlined in Section 1.3. Besides enabling concept-based information
retrieval, semantic XML markup facilitates the integration of textual content with related,
structured and semi-structured data (cf. Winkler, 2003, pp. 24–25).

6.2.2 German Commercial Register Entries

This subsection summarizes a case study in which our framework was employed to seman-
tically annotate a large collection of German Commercial Register entries. To that end,
we briefly describe this domain and characterize the document collection. Subsequently,
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we present the approach taken in the knowledge discovery phase and in the knowledge ap-
plication phase of our framework. Finally, we outline a potential use case for semantically
marked-up Commercial Register entries and discuss the lessons learned.

Application Domain and Text Archive In Germany, the Commercial Register com-
prises information of legal significance for commercial transactions (see Peltzer et al.,
2000, pp. 6–7). Pursuant to the German Commercial Code, merchants and businesses of
particular legal forms are required to file specific facts for registration in the competent
Commercial Register. Although these registers are maintained by district courts for busi-
nesses domiciled in their respective area, all Commercial Register entries are additionally
published by an official federal gazette to ensure nation-wide publicity. The register entries
are made available to the general public since up-to-date knowledge about a company’s
legal affairs is essential to its current and prospective competitors as well as stakeholders
including, but not limited to, suppliers and business customers.

Three major categories of Commercial Register entries can be distinguished: initial
entries of newly established business, update entries, and entries announcing the deletion
of businesses from the register. Depending on the legal form of the registering business,
initial entries comprise form-specific information about, for example, the firm name and
Commercial Register number, the domicile including the address, the business purpose
indicating the industry a business operates in, the amount of capital, as well as the
names of partners and managing directors, respectively. Due to their very nature, update
entries reflect changes and modifications of legal facts (e.g., capital increases or reductions,
appointments of new managing directors, or changes of the legal form and the business
purpose). Finally, deletion entries contain detailed information concerning, for instance,
the dissolution and liquidation of partnerships or companies with limited liability, as
well as the commencement and conclusion of insolvency proceedings. Consequently, the
Commercial Register constitutes a vast and continuously updated source of legally reliable
information that is highly relevant in a competitive intelligence context.

Although Commercial Register entries comprise unstructured textual content, they are
written by civil servants in a highly controlled language for a specific purpose (cf. Bowker
and Pearson, 2002) whose scope is defined by German commercial law. Hence, they
do not comprise narrative text, but expository content (cf. Hearst, 1997, p. 35) about
merchants and businesses. When reading multiple entries, one undoubtedly observes a
natural, thematic clustering tendency (cf. Jain and Dubes, 1988, pp. 201–202) at the
sentence level. For example, appointments of managing directors are typically announced
using one sentence. Since the German alphabet is finite and texts are interpreted from left
to right, all four requirements for applying our DIAsDEM framework (see Subsection 3.2
on page 62) are fulfilled by German Commercial Register entries.

Table 6.2 lists three exemplary Commercial Register update entries and their English
translations. Each entry starts with the Commercial Register number of the respective
company (e.g., HRA 13 870) and its effective publication date. Subsequently, the official
firm name is typically listed along with the place of domicile. The registered legal content
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Table 6.2: Exemplary German Commercial Register Entries and English Translations

HRA 13 870 – 12. Oktober 2001: zeitlos schlafen Behringer und Eckert OHG, Leipzig (Gottschedstr.
12, 04109 Leipzig). Persönlich haftender Gesellschafter: Wilhelm Behringer, geb. 12.06.1959, Berlin;
Sabine Eckert, geb. 12.06.1961, Berlin. Offene Handelsgesellschaft. Die Gesellschaft hat am 1. Dezem-
ber 1994 begonnen. Der Sitz der Gesellschaft ist von Berlin (bisher Amtsgericht Charlottenburg, HRA
26 745) nach Leipzig verlegt.

HRA 13 870 – October 12, 2001: zeitlos schlafen Behringer und Eckert OHG, Leipzig (Gottschedstr. 12,
04109 Leipzig). General partners: Wilhelm Behringer, born 1959/06/12, Berlin; Sabine Eckert, born
1961/06/12, Berlin. General commercial partnership. The partnership has commenced operations
on December 1, 1994. The domicile of the partnership has been relocated from Berlin (previously
registered at district court Charlottenburg, HRA 26 745) to Leipzig.

4 HRB 4970 – 21. März 2001: Fuchs Gesellschaft mit beschränkter Haftung, Bensheim. Die Prokura
Joachim Jäger ist erloschen. Joachim Jäger, geb. 18.08.1967, Wald-Michelbach, ist zum Geschäftsführer
bestellt. Er vertritt die Gesellschaft mit einem anderen Geschäftsführer oder einem Prokuristen.

4 HRB 4970 – March 21, 2001: Fuchs Gesellschaft mit beschränkter Haftung, Bensheim. The Prokura
conferred to Joachim Jäger has been terminated. Joachim Jäger, born 1967/08/18, Wald-Michelbach,
has been appointed managing director. He represents the company jointly with another managing
director or Prokura holder.

90 HRB 113 – 13. Dezember 2000: ’S I E G E’ Siedlungsgesellschaft für das Verkehrspersonal
gemeinnützige Gesellschaft mit beschränkter Haftung, Mainz. Der Prokurist Wolfgang Weber ist
zur Veräußerung und Belastung von Grundstücken und grundstücksgleichen Rechten berechtigt. Die
Prokura des Herbert Schmeiser ist erloschen. Peter Kiesewetter ist nicht mehr Geschäftsführer.

90 HRB 113 – December 13, 2000: ’S I E G E’ Siedlungsgesellschaft für das Verkehrspersonal gemein-
nützige Gesellschaft mit beschränkter Haftung, Mainz. The Prokura holder Wolfgang Weber has been
authorized to transfer and encumber real property and rights equivalent to real property. The Prokura
conferred to Herbert Schmeiser has been terminated. Peter Kiesewetter is no longer managing director.

follows this entry header. All texts listed in Table 6.2 are update entries that announce
legally relevant changes, such as a domicile relocation in the first one. The natural cluster-
ing tendency at the sentence level is, for example, illustrated by texts 2 and 3 that both
announce the termination of a once-granted Prokura2. To facilitate the understanding
of the highly regulated Commercial Register domain, Appendix C comprises the most
important German terms along with their English translations, which are mostly based
on Peltzer et al. (2000).

Descriptive properties of the text archives marked up during knowledge discovery and
knowledge application are summarized in Table 6.3. It is gratefully acknowledged that
both text archives were provided for research purposes by Heins + Partner GmbH, Biele-
feld, Germany. The training text archive consists of 23,668 Commercial Register entries
published between 1997 and 2001. This collection was carefully assembled to include all

2Prokura holders are legal representatives of the business they are employed by. The scope of the
representative power referred to as the Prokura is regulated by the German Commercial Code (cf.
Peltzer et al., 2000, pp. 10–11).
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Table 6.3: Overview of Text Archives Used in the Commercial Register Case Study

Text Archive Property Knowledge Discovery Phase Knowledge Application Phase

Language German German
Text Unit Granularity Sentence Sentence
Number of Documents 23,668 35,881
Number of Text Units 115,647 165,330
Publication Date of Documents 1997/06/25–2001/12/01 2004/01/01–2004/01/31

three entry types discussed above for all possibly occurring legal forms, such as sole pro-
prietorship, general partnership, limited liability company, and stock corporation. This
stratified random sampling approach (e.g., cf. Hand et al., 2001, pp. 135-136) was neces-
sary to facilitate the discovery of concepts and semantic XML tags, respectively, that are
published less frequently (e.g., foundation entries of non-profit limited liability companies
or stock corporations). The text archive processed in the knowledge application phase, in
contrast, contains all 35,881 Commercial Register entries published in Germany in Jan-
uary 2004. Thereby, the classification knowledge discovered in a stratified sample was
applied to a real-world scenario of sequentially incoming text documents. The author is
not aware of any substantial structural changes of the relevant Commercial Code sections
between the years 1997 and 2004.

This case study was performed using DIAsDEM Workbench 2.2 introduced in
Chapter 5. Core results of this case study, such as the concept-based XML DTD, the
tagging quality assessment protocol, and a sample of marked-up XML documents, are
electronically accessible (see Appendix A on page 217).

Knowledge Discovery Phase Based on the introduction of the DIAsDEM knowledge
discovery process in Chapter 4, we henceforth outline the KDT steps performed in the
Commercial Register case study. The fully parameterized KDT process flow (cf. Def-
inition 13 on page 61) was interactively created to conform with Algorithm 4.9 (see
page 149) by means of selecting, parameterizing, and executing appropriate KDT tasks
within DIAsDEM Workbench. Since each KDT task execution was recorded in a
batch script by our workbench, the resulting fully parameterized KDT process flow was
represented by a DIAsDEM batch script.

1. Pre-processing of text documents

a) Text document import : Heins + Partner GmbH provided a comma-separated
input file that comprised the actual Commercial Register entries in plain text
format and descriptive metadata (e.g., competent district court, entry type,
firm name, and Commercial Register number of the merchant or company).
This input file was transformed into a text archive (cf. Definition 3 on page 58)
suitable for applying our framework.
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b) Creation of text units: Subsequently, the original text documents were de-
composed into sentences and text units, respectively, as introduced in Sub-
section 4.2.1. To identify sentence boundaries, the heuristic sentence identi-
fication algorithm outlined in Subsection 5.2.1 was employed. The input pa-
rameters to this algorithm comprised approx. 3,500 German, mostly domain-
independent abbreviations containing periods (e.g., "z.B.") and 46 mostly
domain-independent regular expressions masking periods that do not serve as
sentence boundaries (e.g., "http://www.my-domain.de", "1.000,00 EUR", or
"01.01.2007"). By creating text units, the initially imported text archive was
converted into an intermediate text archive (cf. Definition 21 on page 75).

c) Tokenization of text units : In this task, sentences were tokenized to separate
words from punctuation marks (cf. Subsection 4.2.1). In addition, 47 regular
expressions were designed to convert, for example, date and time expressions
into their canonical forms suitable for named entity extraction. The input
parameters also included 96 domain-specific, frequently occurring multi-token
terms (e.g., legal forms like "Limited Company"). Finally, 18 search and re-
place statements were utilized to break relevant composite nouns into their
main components and to deal with frequent hyphenation patterns.

d) Extraction of named entities : Using the prototypical named entity extractor
of DIAsDEM Workbench (cf. Subsection 5.2.1), instances of the named
entity types listed in Table 6.4 were identified and replaced by placeholders,
as discussed in Subsection 4.2.2. Many look-up lists (e.g., German forenames,
surnames, cities, and villages) were provided by Heins + Partner GmbH for
the purpose of this case study. A considerable effort was put into designing
the domain-specific composite named entity patterns to identify mentioned
persons, companies, and company relocations in text units.

e) Lemmatization of text units : TreeTagger (cf. Schmid, 1994, 1999) was em-
ployed without any parameter modifications via the DIAsDEM Workbench
task Lemmatize Text Units to determine the lemma forms of all natural
language words, as explained in Subsection 4.2.3.

f) Word sense disambiguation: Since the language used in the rather narrow
Commercial Register domain is highly controlled by the German Commercial
Code, disambiguating the sense of lemmatized tokens (cf. Subsection 4.2.3) was
of minor importance in this case study. In particular, only 13 tokens were dis-
ambiguated by appropriate contextual terms and sense definitions, respectively
(cf. Manning and Schütze, 1999, pp. 242-244).

g) Establishment of the controlled vocabulary : Following the pre-processing steps,
the intermediate training archive comprised 23,635 distinct terms not count-
ing named entity placeholders and numeric tokens. An auxiliary DIAsDEM
Workbench task created an initial, domain-specific controlled vocabulary
containing all terms with collection frequency greater than 49. Subsequently,
this vocabulary was manually refined into a thesaurus by defining synonyms,
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Table 6.4: Named Entity Types Extracted in the Commercial Register Case Study

Named Entity Type Description, Example, and Resources Utilized in Extraction

document id Headers of Commercial Register entries (e.g., "HRA 13 870 - 12. Oktober

2001:") were extracted using one regular expression.
amount of money German canonical forms (e.g., "25000,00 EUR") of amounts of money, such as

"25 000,- Euro", were extracted using one regular expression.
date German canonical forms (e.g., "31.12.2000") of date expressions, like "31.

Dezember 2000", were extracted using one regular expression.
paragraph Section headings of articles of association, as well as laws and regulations (e.g.,

"§ 201 UmwG") were extracted using three regular expressions.
organization id Commercial Register numbers that uniquely identify merchants and businesses

in the area of one district court (e.g., "Amtsgericht Charlottenburg, HRA 26

745") were extracted using three regular expressions.
place German cities (e.g., "Leipzig"), and villages (e.g., "Wald-Michelbach"), as

well as large international cities were extracted using 40 place indicator terms,
22,852 names of places, and 53,726 place name affixes or district names.

street Street names (e.g., "Gottschedstr. 12") were extracted using 22 street name
suffixes, 194,918 non-standard street names, and three regular expressions.

profession A list of 867 frequently occurring job or occupational titles (e.g., "Dipl.-

Ingenieur") was utilized to extract them from Commercial Register entries.
person Person names (e.g., "Sabine Eckert") were initially identified using 51 person

name indicator terms, 1,856 academic titles, 143,562 forenames, 51 middle ini-
tials, 430,689 surnames, 356 surname suffixes, and 63 name affixes. They were
subsequently combined with nearby occurring dates, places, street names, and
job titles into composite named entities of type person (e.g., "Sabine Eckert,

geb. 12.06.1961, Berlin") using 175 composite named entity patterns.
company Company names (e.g., "Fuchs Gesellschaft mit beschränkter Haftung")

were initially identified using 648 organization indicator terms, 259 organiza-
tion name suffixes (e.g., "GmbH" and "Ltd."), 118 organization affixes, one
regular expression, and the registered firm name contained in the metadata
of each entry. They were subsequently combined with nearby occurring places,
street names, district courts, and Commercial Register numbers into composite
named entities of type company (e.g., "Fuchs Gesellschaft mit beschränk-

ter Haftung, Bensheim") using 305 composite named entity patterns.
company relocation Identified as composite named entities by means of 29 composite named en-

tity patterns, company relocations (e.g., "von Berlin (bisher Amtsgericht

Charlottenburg, HRA 26 745) nach Leipzig") comprise available informa-
tion about the origin and destination domicile of relocating companies (i.e.,
place, street name, district court, and Commercial Register number).

removing irrelevant terms, and adding new terms. The final thesaurus com-
prised 1,366 terms, 158 of which served as text unit descriptors in this case
study. By far the largest number of 1,208 non-descriptors were mapped onto
the descriptor representing the purpose, or line of business, of companies.

2. Iterative clustering of text unit vectors: Table 6.5 lists parameter settings and results
for all 12 clustering iterations performed in this case study. In each clustering
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iteration, the following five knowledge discovery tasks were performed:

a) Vectorization of text units: Using a DIAsDEM Workbench task, we applied
the text unit descriptor weighting scheme (cf. Subsection 4.2.5 on page 94) to
map text units onto text unit vectors.

b) Selecting, parameterizing, and executing the clustering algorithm in discovery
mode: Although DIAsDEM Workbench supports all algorithms discussed
in Subsection 4.3.2, we deliberately selected the bisecting k-means algorithm
(Steinbach et al., 2000) for execution. The purpose of this case study is not to
compare the performance of different clustering algorithms, but to demonstrate
the applicability of our framework to mark up real-world text archives. One
advantageous property of the bisecting k-means is that it requires only one
input parameter, namely, the desired number of clusters k ∈ N. The bisecting
k-means was employed in combination with the cosine similarity due to the
characteristics of this proximity measure (cf. Subsection 4.3.1). Initially, the
number of desired text unit clusters was set to k = 800. Preliminary exper-
iments, which involved clustering a 10% random text unit vector sample for
k = 200, 400, . . . , 1600 and assessing the corresponding cluster validity using
the indices surveyed in Table 4.12 on page 106, indicated that there exists
a large number of clusters. However, the overall cluster separation tends to
worsen for k > 800. In addition, increasing k resulted in a growing number
of text unit clusters that were assigned only one member. Hence, we started
with k = 800 in iteration 1 to find both compact and well separated clusters.
As listed in Table 6.5, the number of desired text unit clusters was raised to
k = 1600 to discover more specific semantic concepts in iterations 7 through 9.
Finally, the number of text unit clusters was decreased to k = 400 to identify
even the most general remaining concepts in the last iteration 12.

c) Automatic ranking of text unit clusters and automatic default labeling of ac-
ceptable clusters: The workbench task Monitor Cluster Quality 2.2 au-
tomatically ranked the resulting clusters by decreasing quality (cf. Subsec-
tion 4.3.3 on page 115) and additionally generated default labels of all qualita-
tively acceptable clusters (cf. Subsection 4.4.1 on page 133). Table 6.5 lists the
user-specified, iteration-specific settings of our five DIAsDEM cluster qual-
ity criteria along with the number of resulting acceptable and unacceptable
clusters. This table reveals that our cluster quality requirements were step-by-
step relaxed to discover more specific concepts in earlier iterations and rather
general concepts in later iterations.

d) Interactive screening of cluster ranking and interactive review of default cluster
labels : Using the Cluster Label Editor tool of DIAsDEM Workbench,
the automatically generated cluster quality decisions and the default cluster la-
bels were manually reviewed and modified, if necessary. If text units assigned
to an automatically accepted cluster did not adhere to a single and overwhelm-
ingly pure semantic concept, the corresponding cluster was typically rejected
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Table 6.5: Summary of Pattern Discovery in 12 Clustering Iterations in the Commercial
Register Case Study

Cluster- Input Parameter Dominant Rare Maximum Minimum Minimum
ing Iter- Text of Bisecting Descriptor Descriptor Descriptor Descriptor Cluster

ation Units k-Means Threshold Threshold Coverage Dominance Size

1 115,647 k = 800 0.8 0.0025 0.10 0.50 50
2 66,853 k = 800 0.8 0.0050 0.20 0.40 45
3 44,598 k = 800 0.8 0.0075 0.20 0.35 40
4 34,120 k = 800 0.8 0.0075 0.25 0.30 35
5 30,201 k = 800 0.8 0.0100 0.30 0.25 30
6 24,606 k = 800 0.8 0.0100 0.35 0.20 25
7 19,990 k = 1, 600 0.8 0.0100 0.35 0.20 20
8 14,531 k = 1, 600 0.8 0.0200 0.35 0.20 15
9 11,828 k = 1, 600 0.8 0.0200 0.35 0.20 10

10 9,256 k = 800 0.8 0.0200 0.35 0.33 10
11 7,655 k = 800 0.8 0.1000 0.35 0.20 10
12 6,306 k = 400 0.8 0.1000 0.35 0.20 10

Cluster- Clustering Number of Clusters (Number of Text Units Therein) after Stop
ing Iter- Quality Automated Ranking Interactive Screening Iterative

ation Index Acceptable Unacceptable Acceptable Unacceptable Clustering

1 0.505 52 (52,269) 748 (63,378) 39 (48,794) 761 (66,853) No
2 0.427 75 (24,731) 725 (42,122) 61 (22,255) 739 (44,598) No
3 0.414 76 (12,459) 724 (32,139) 55 (10,478) 745 (34,120) No
4 0.370 95 (7,224) 705 (26,896) 52 (3,919) 748 (30,201) No
5 0.376 137 (8,699) 663 (21,502) 90 (5,595) 710 (24,606) No
6 0.370 175 (8,794) 625 (15,812) 96 (4,616) 704 (19,990) No
7 0.445 281 (8,302) 1,319 (11,688) 193 (5,459) 1,407 (14,531) No
8 0.452 237 (4,976) 1,363 (9,555) 147 (2,703) 1,453 (11,828) No
9 0.460 370 (5,342) 1,230 (6,486) 207 (2,572) 1,394 (9,256) No

10 0.471 243 (5,383) 557 (3,873) 93 (1,601) 707 (7,655) No
11 0.454 281 (4,603) 519 (3,052) 96 (1,349) 704 (6,306) No
12 0.418 169 (4,024) 231 (2,282) 33 (828) 367 (5,478) Yes

by the domain expert to ensure a high markup quality. To discover the most
specific semantic markup possible, text unit clusters representing a mixture of
specific concepts under a common, more general concept were also manually
rejected as unacceptable in earlier iterations. Facing a very large number of
clusters, this review was intentionally limited to qualitatively acceptable clus-
ters in the first 11 iterations. In the final iteration 12, however, all remaining
400 clusters were carefully inspected. Due to the large number of discovered
semantic concepts in the Commercial Register domain, all final cluster labels
were additionally prefixed by category identifiers chosen by the human expert
(e.g., the prefix CB04 of CB04_GeneralPartner_Joining). Category identi-
fiers group cluster labels and semantic XML tags, respectively, in a meaningful
way to facilitate querying the semantically marked-up XML documents. The
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Table 6.6: Semantically Marked-Up XML Document Comprising the First Exemplary
German Commercial Register Entry (cf. Table 6.2 on Page 183)

1: <?xml version="1.0" encoding="ISO-8859-1"?>

2: <!DOCTYPE CommercialRegisterEntry SYSTEM "CommercialRegisterEntry.dtd">

3:
4: <CommercialRegisterEntry>

5: <TaggedDocument>

6: <JA01_EntryHeader Company="ID: 5; Name: zeitlos schlafen Behringer und Eckert

OHG, Leipzig; Place: 04109 Leipzig; Street: Gottschedstr. 12" DocumentID="HRA

13870 - 12.10.2001">HRA 13 870 - 12. Oktober 2001: zeitlos schlafen Behringer

und Eckert OHG, Leipzig (Gottschedstr. 12, 04109 Leipzig).</JA01_EntryHeader>

7: <CB01_GeneralPartner Person="ID: 12; Name: Wilhelm Behringer; DateOfBirth:

12.06.1959; Place: Berlin [AND] ID: 13; Name: Sabine Eckert; DateOfBirth:

12.06.1961; Place: Berlin">Persönlich haftender Gesellschafter: Wilhelm

Behringer, geb. 12.06.1959, Berlin; Sabine Eckert, geb. 12.06.1961, Berlin.

</CB01_GeneralPartner>

8: <EA01_LegalForm>Offene Handelsgesellschaft.</EA01_LegalForm>

9: <EB01_CommencementOfPartnership Date="01.12.1994">Die Gesellschaft hat am

1. Dezember 1994 begonnen.</EB01_CommencementOfPartnership>

10: <IC04_Domicile_Change CompanyRelocation="ID: 18; OriginCommercialRegisterID:

Amtsgericht Charlottenburg, HRA 26745; OriginPlace: Berlin; DestinationPlace:

Leipzig">Der Sitz der Gesellschaft ist von Berlin (bisher Amtsgericht

Charlottenburg, HRA 26 745) nach Leipzig verlegt.</IC04_Domicile_Change>

11: </TaggedDocument>

12: </CommercialRegisterEntry>

results of this interactive review are also listed in Table 6.5.
e) Update of the intermediate text archive: At the end of each clustering itera-

tion, the task Tag Text Units of DIAsDEM Workbench was executed
to persistently store the results in the intermediate text archive. After itera-
tion 12, only 5,478 (4.7%) of altogether 115,647 text units remained assigned
to qualitatively unacceptable clusters. Hence, the iterative clustering phase of
our knowledge discovery process was terminated by the expert.

3. Post-processing of discovered patterns

a) Establishment of the concept-based XML DTD : Subsequent to the final cluster-
ing iteration of the knowledge discovery process, a concept-based XML docu-
ment type definition was derived by a DIAsDEM Workbench task in ac-
cordance with Subsection 4.4.2 on page 138. Generated with a minimum at-
tribute support of 10%, this concept-based XML document type definition was
named CommercialRegisterEntry.dtd in correspondence with its root ele-
ment. It comprises 242 elements representing a variety of semantic concepts
from specific ones (e.g., DA01_ManagingDirector_Appointment) to broader
ones (e.g., FA01_Merger). For each DTD element, the automatically generated
DTD documentation template contains an enumeration of valid attributes and

189



6 Experimental Evaluation

Table 6.7: Semantically Marked-Up XML Document Comprising the Second Exemplary
German Commercial Register Entry (cf. Table 6.2 on Page 183)

1: <?xml version="1.0" encoding="ISO-8859-1"?>

2: <!DOCTYPE CommercialRegisterEntry SYSTEM "CommercialRegisterEntry.dtd">

3:
4: <CommercialRegisterEntry>

5: <TaggedDocument>

6: <JA01_EntryHeader Company="ID: 3; Name: Fuchs Gesellschaft mit beschränkter

Haftung; Place: Bensheim" DocumentID="4 HRB 4970 - 21.03.2001">4 HRB 4970 -

21. März 2001: Fuchs Gesellschaft mit beschränkter Haftung, Bensheim.

</JA01_EntryHeader>

7: <DC03_Prokura_Termination Person="ID: 5; Name: Joachim Jäger">Die Prokura

Joachim Jäger ist erloschen.</DC03_Prokura_Termination>

8: <DA01_ManagingDirector_Appointment Person="ID: 9; Name: Joachim Jäger;

DateOfBirth: 18.08.1967; Place: Wald-Michelbach">Joachim Jäger, geb.

18.08.1967, Wald-Michelbach, ist zum Geschäftsführer bestellt.

</DA01_ManagingDirector_Appointment>

9: <BG04_SpecificProvision_PersonalPronoun_JointPowerOfRepresentation>Er

vertritt die Gesellschaft mit einem anderen Geschäftsführer oder

einem Prokuristen.

</BG04_SpecificProvision_PersonalPronoun_JointPowerOfRepresentation>

10: </TaggedDocument>

11: </CommercialRegisterEntry>

five exemplary text units. Appendix A on page 217 includes details on how
to electronically access the concept-based XML DTD and the corresponding
DTD documentation template.

b) Semantic XML tagging of text documents : As explained in Subsection 4.4.3,
the entire original text archive was converted into 23,668 semantically marked-
up XML documents conforming to the concept-based XML document type
definition CommercialRegisterEntry.dtd derived beforehand. Table 6.6, Ta-
ble 6.7, and Table 6.8 contain semantically marked-up XML documents that
correspond to the three exemplary Commercial Register entries listed in Ta-
ble 6.2 on page 183. A 5% random sample of semantically marked-up XML
documents is electronically accessible (see Appendix A on page 217).

To assess the quality of the generated semantic XML markup (cf. Section 6.1), a ran-
dom sample comprising 1,156 (1%) of altogether 115,647 semantically marked-up text
units was drawn. The author served as a domain expert and assessed the markup quality
of this text unit sample using the Tagging Quality Evaluator 2.2 tool of DIAs-
DEM Workbench. Columns 2 and 3 of Table 6.9 on page 192 list the results of quality
assessment in the knowledge discovery phase. The quality measures for XML tag names
and XML tag attributes are indeed very promising. With 0.95 confidence, for example,
the XML tag name accuracy is in the interval [0.9411; 0.9655]. Focusing on the markup
correctness of text units enclosed in semantic XML tags further improves the results. For
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Table 6.8: Semantically Marked-Up XML Document Comprising the Third Exemplary
German Commercial Register Entry (cf. Table 6.2 on Page 183)

1: <?xml version="1.0" encoding="ISO-8859-1"?>

2: <!DOCTYPE CommercialRegisterEntry SYSTEM "CommercialRegisterEntry.dtd">

3:
4: <CommercialRegisterEntry>

5: <TaggedDocument>

6: <JA01_EntryHeader Company="ID: 3; Name: ’S I E G E’ Siedlungsgesellschaft für

das Verkehrspersonal gemeinnützige Gesellschaft mit beschränkter Haftung;

Place: Mainz" DocumentID="90 HRB 113 - 13.12.2000">90 HRB 113 - 13. Dezember

2000: ’S I E G E’ Siedlungsgesellschaft für das Verkehrspersonal

gemeinnützige Gesellschaft mit beschränkter Haftung, Mainz.

</JA01_EntryHeader>

7: Der Prokurist Wolfgang Weber ist zur Veräußerung und Belastung von

Grundstücken und grundstücksgleichen Rechten berechtigt.

8: <DC03_Prokura_Termination Person="ID: 7; Name: Herbert Schmeiser">Die Prokura

des Herbert Schmeiser ist erloschen.</DC03_Prokura_Termination>

9: <DA02_ManagingDirector_Removal Person="ID: 9; Name: Peter Kiesewetter">Peter

Kiesewetter ist nicht mehr Geschäftsführer.</DA02_ManagingDirector_Removal>

10: </TaggedDocument>

11: </CommercialRegisterEntry>

instance, the XML tag name precision is in the interval [0.9663; 0.9846] with 0.95 confi-
dence. The protocol of the entire quality assessment procedure is electronically available
(see Appendix A on page 217).

Knowledge Application Phase Applying the classification knowledge acquired in phase
1 of our framework to mark up all Commercial Register entries published in January 2004
required only slight modifications of the recorded DIAsDEM batch script. In particular,
the following tasks were edited and deleted, respectively, in the batch script to bridge
knowledge discovery and knowledge application (cf. Section 4.5 on page 148):

1. Pre-processing of text documents

a) Text document import : The January 2004 input file, which was also provided
by Heins + Partner GmbH, was imported instead of the training input file.

2. Iterative classification of text unit vectors: All tasks recorded in 12 clustering it-
erations of the knowledge discovery phase were edited and removed, respectively,
to transform them into 12 corresponding classification iterations, as introduced in
Section 4.5 on page 148:

a) Vectorization of text units: Text units were mapped onto text unit vectors in
application mode (cf. Subsection 4.2.5 on page 94). Hence, the iteration-specific
collection frequency components of descriptor weights were not computed, but
retrieved from the respective clustering iteration metadata items.
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Table 6.9: Results of the Semantic XML Markup Quality Assessment in the Commercial
Register Case Study

Knowledge Discovery Phase Knowledge Application Phase
Quality Measure for Value in Approximate 95% Value in Approximate 95%
XML Tag Names Sample Confidence Interval Sample Confidence Interval

Number of Text Units 1,156 1,239
Proportion of True Positives 0.9282 [0.9133; 0.9431] 0.9177 [0.9024; 0.9330]
Proportion of False Positives 0.0234 [0.0146; 0.0321] 0.0242 [0.0157; 0.0328]
Proportion of True Negatives 0.0251 [0.0161; 0.0341] 0.0307 [0.0211; 0.0403]
Proportion of False Negatives 0.0234 [0.0146; 0.0321] 0.0274 [0.0183; 0.0365]
XML Tag Name Accuracy 0.9533 [0.9411; 0.9655] 0.9483 [0.9360; 0.9607]
XML Tag Name Precision 0.9755 [0.9663; 0.9846] 0.9743 [0.9652; 0.9834]
XML Tag Name Recall 0.9755 [0.9663; 0.9846] 0.9710 [0.9613; 0.9806]

Knowledge Discovery Phase Knowledge Application Phase
Quality Measure for Value in Approximate 95% Value in Approximate 95%
XML Tag Attributes Sample Confidence Interval Sample Confidence Interval

True Number of Named Entities 1,266 1,271
XML Attribute Accuracy 0.9198 [0.9049; 0.9348] 0.9359 [0.9224; 0.9493]
XML Attribute Precision 0.9741 [0.9651; 0.9831] 0.9859 [0.9793; 0.9926]
XML Attribute Recall 0.9724 [0.9632; 0.9817] 0.9604 [0.9496; 0.9713]

b) Execution of the clustering algorithm in application mode: In each classifi-
cation iteration, the clustering algorithm parameterized and executed in the
corresponding clustering iteration was employed in application mode (cf. Sub-
section 4.3.4 on page 124). Hence, text unit vectors were assigned to clusters
identified and semantically labeled in the knowledge discovery phase.

c) Automatic ranking of text unit clusters and automatic default labeling of ac-
ceptable clusters: The corresponding tasks were deleted in the batch script.

d) Interactive screening of cluster ranking and interactive review of default cluster
labels : The related, interactive workbench tasks were not performed.

3. Post-processing of discovered patterns

a) Establishment of the concept-based XML DTD : This task was removed from
the batch script as well.

The modified batch script, which conformed to Algorithm 4.11 on page 151, was ex-
ecuted without any human intervention by DIAsDEM Workbench Batch Script
Client. To evaluate the markup quality, as discussed in Section 6.1, we subsequently drew
a random sample comprising 1,239 (0.75%) of altogether 165,330 semantically marked-up
text units in the application text archive. Analogous to the knowledge discovery phase,
the author assessed the markup quality of this sample. The results are listed in columns 4
and 5 of Table 6.9. Furthermore, Appendix A contains information on how to electroni-
cally access the quality assessment protocol. It is noteworthy that the quality measures
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for XML tag names and XML tag attributes are approx. equal in both knowledge appli-
cation and knowledge discovery. The XML attribute accuracy achieved in the knowledge
application sample (93.59%) is even better than the value obtained from the knowledge
discovery sample (91.98%). This rather unusual fact can be attributed to the stratified
sampling approach for Commercial Register entries in the knowledge discovery phase. Un-
like the regularly published entries marked up during knowledge application, the stratified
sample was designed to comprise infrequently occurring concepts and named entities as
well.

Usage Scenario and Lessons Learned The results of this case study were truly encour-
aging. In particular, the high precision and recall values, which were obtained for both
XML tag names and their attributes in the knowledge application phase, paved the way
for applying the DIAsDEM framework in a productive environment. Concretely, one
usage scenario for semantically marked-up Commercial Register entries was realized at
Heins + Partner GmbH, Bielefeld, Germany, by employing our framework for semantic
XML tagging of large text archives. Incoming Commercial Register entries are now auto-
matically transformed into XML documents in a daily batch process. The major business
driver to employ our framework was the necessity of updating a complex database of Ger-
man businesses without the delays triggered by manually or semi-automatically extracting
the relevant information from Commercial Register entries. Combining the benefits of se-
mantic XML markup and named entity extraction enabled Heins + Partner to update
its database with legally reliable information published by German district courts. By
performing additional clustering iterations, extending the domain-specific thesaurus, and
fine-tuning the named entity extraction parameters, Heins + Partner achieved even better
results than published in this work. After all, ensuring the highest possible markup quality
was the primary objective of this project to reduce the risk of inserting false information
(e.g., regarding the commencement of insolvency proceedings) into the database.

When recapitulating the Commercial Register case study, the following lessons learned
are particularly noteworthy and shall thus be summarized:

• Think big, start small! The iterative aspect of knowledge discovery emphasized in
Subsection 2.1.1 is of paramount importance to achieve quick wins. When starting
a semantic XML tagging project in a new domain, we suggest adopting a step-
by-step approach to quickly gain insights into the particularities of the focal text
archive. For example, we initially parameterized a KDT process flow using default
parameters and an automatically generated controlled vocabulary. Subsequently,
the markup quality was step-by-step improved by modifying input parameters.

• Be precise! The domain-specific controlled vocabulary and the input parameters
of our named entity extraction module need to be continously refined by carefully
defining synonyms, adding new relevant terms, or precisely defining pattern extrac-
tion rules. Achieving a high markup quality in the knowledge application phase
thus requires precise and accurate human efforts during knowledge discovery. For
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instance, the false negative rate can be reduced by updating the thesaurus if new
synonyms of existing text unit descriptors occur in Commercial Register entries.

• Be patient! Our iterative clustering phase is designed to discover both specific and
general, as well as more and less frequent concepts. As discussed above, manu-
ally rejecting certain, qualitatively acceptable clusters (e.g., representing a mixture
of specific concepts under a common, more general concept) in earlier iterations
facilitates the discovery of more specific text unit clusters in subsequent iterations.

• Combine domain and knowledge discovery expertise! To successfully employ our
framework for semantic XML tagging, both types of knowledge are required. For
example, domain expertise is necessary to establish or refine an effective thesaurus.
Selecting and parameterizing appropriate clustering algorithms, however, requires
rather generic knowledge discovery experience. In this case study, the author took
on both roles due to his interdisciplinary background.

• Structure discovered concepts! When discovering many semantic concepts, struc-
turing them by prefixing concept names with category identifiers (e.g., the prefix
CB04 of CB04_GeneralPartner_Joining) improves the lucidity and therefore the
usability of the generated concept-based XML document type definition.

Furthermore, important issues to be resolved by future research and future versions of
DIAsDEM Workbench are discussed in Section 7.2.

6.2.3 News about U.S. Mergers and Acquisitions

The second case study in the competitive intelligence domain is described in detail in this
subsection. Analogous to the approach adopted in presenting the Commercial Register
case study, we initially outline the application domain and characterize the text collection.
Subsequently, we describe both phases of our framework, concisely present a potential use
case for semantically marked-up news stories about mergers and acquisitions, and finally
discuss the lessons learned in this case study.

Application Domain and Text Archive According to Gaughan (2002, p. xi), the “field
of mergers and acquisitions continues to experience dramatic growth.” In November 1999,
for example, British Vodafone AirTouch PLC announced the hostile acquisition of German
Mannesmann AG in a transaction valued at $202.8 billion (cf. Gaughan, 2002, pp. 3–8).
In principle, a merger is a combination of two companies such that only one company
survives and the merged one ceases to exist. However, the author defined a variety of
specific merger types and additionally differentiated mergers from consolidations (i.e.,
two or more companies form an entirely new company) and takeovers, which sometimes
refer to hostile transactions. In general, the term acquisition denotes both the purchase of
an entire company (i.e., a merger) or the controlling interest in a company (cf. Gaughan,
2002, p. 595).
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Without doubt, the timely collection and analysis of information concerning merger and
acquisition (M&A) activities of both current and potential competitors are of great impor-
tance to obtain actionable competitive intelligence. “One of the most difficult searches” to
gain competitive intelligence, as emphasized by Fuld (1995, p. 353), “involves information
on a merger or acquisition.” Kahaner (1997, pp. 138–142) even devoted an entire chapter
to the benefits of using competitive intelligence in M&A transactions. When it comes
to forecasting a competitor’s likely actions in the future, publicly available information
about mergers and acquisitions is capable of providing highly valuable insights (cf. Ka-
haner, 1997, pp. 102–106). In particular, M&A analysis helps companies to discover new
and potential competitors, learn from the success and failure of others, and increase the
range and quality of one’s own acquisition targets (cf. Kahaner, 1997, pp. 22–28). Due
to the great business value inherent in textual documents focusing on M&A deals, this
application domain has attracted many information extraction (cf. Subsection 2.1.3) re-
searchers in recent decades (e.g., see Rau, 1888; Soderland, 1999; Freitag, 2000; Moens,
2006, pp. 213–214).

Fuld (1995, p. 353) collected a number of merger and acquisition news sources and
directories. Another important, publicly available resource for gathering information on
M&A talks and rumors, as well as announced, closed, and completed transactions are
news stories continuously published by local and international news agencies. Published
by Reuters Limited, the Reuters Corpus, Vol. 1, English Language, 1996-08-20 to 1997-
08-19, comprises 806,791 news stories (cf. Rose et al., 2002; Lewis et al., 2004). This text
archive, which is freely available to the research community, contains all English language
news items produced by Reuters journalists between August 20, 1996, and August 19,
1997. The news stories of this archive are formated in an early version of NewsML, the
XML-based News Markup Language (cf. Geroimenko, 2004, p. 103). To enhance the
value of this collection for research purposes, each news item is annotated with category
codes for featured topics, regions, and industry sectors. Rose et al. (2002) discussed the
annotation, or metadata generation, process in great depth, which involved a combination
of text categorization, manual editing, and manual correction.

In our second case study, we focused on news items annotated with topic code C181,
which is assigned to news about mergers and acquisitions, and region code USA, which
is assigned to news items related to the United States of America. Table 6.10 lists three
exemplary news stories about U.S. mergers and acquisitions in the original spelling, which
includes some mistakes (e.g., “acquisiton” and “subisidiary”). By limiting our input docu-
ments to news items assigned the topic code C181 and region code USA, we extracted
a thematic sub-corpus that fulfills all four requirements for using the DIAsDEM frame-
work (see Subsection 3.2 on page 62). In particular, this sub-collection solely consists
of domain-specific documents of relatively homogeneous and expository content, namely,
M&A news related to transactions in the United States. Unlike the highly controlled lan-
guage used by German civil servants to compose Commercial Register entries, however,
the language used by Reuters journalists to report on M&A issues is largely varying in
grammar, vocabulary, and style. An average news story, which consists of approx. ten
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Table 6.10: Exemplary News Stories about U.S. Mergers and Acquisitions (Source:
Reuters Corpus, Volume 1, English Language, 1996-08-20 to 1997-08-19; cf.
Rose et al., 2002)

USA: Gillette to acquire Duracell - WSJ. Gillette Co is near an agreement to buy Duracell International
Inc in a stock swap worth over $7 billion, the Wall Street Journal reported Thursday. The newspaper,
quoting anonymous sources, said the deal could be announced Thursday, adding that neither company
would comment on the story. Duracell’s largest shareholder is the New York buyout firm Kohlberg
Kravis Roberts & Co, which holds 34 percent of the company, the article said. KKR declined to
comment when contacted by Reuters late Wednesday. The deal values Duracell shares at $58.85 each,
or 0.904 share of Gillette. The Journal said the transaction includes the assumption of debt and
is expected to immediately be accretive to Gillette’s earnings. Neither company was immediately
available to comment on the article. –New York Newsdesk (212) 859-1610.

USA: Culbro discusses acquiring cigar maker. Culbro Corp said Tuesday the company and its General
Cigar unit are in preliminary talks that could lead to the acquisiton of privately held Villazon & Co Inc
which makes premium cigars in Florida and Honduras. The Culbro statement gave no terms for the
acquisition, but did say it anticipates completing the transaction by year end. – New York Newsdesk
212-859-1610.

USA: Houghten target of complaint out of merger. Houghten Pharmaceuticals Inc said Friday that
a complaint has been filed against the company and its officers in a dispute over its acquisition of
ChromaXome Corp. The complaint was filed by Michael Dickman and Katie Thompson, the founders
of ChromaXome, who accuse Houghten of denying them access to and employment with ChromaXone.
The company said the complaint also accuses it of preventing Dickman and Thompson from obtaining
certain consideration in connection with the acquisition. The complaint was filed in Superior Court in
San Diego. Houghten said the claims are without merit. Houghten develops and uses combinatorial
chemistry and other molecular diversity technologies to pursue the discovery of small-molecule drug
therapies. ChromaXome, now a wholly owned subisidiary, was a privately held combinatorial company.

sentences, is longer than an average Commercial Register entry.

Table 6.11 lists descriptive properties of the text sub-collection used in the knowledge
discovery and knowledge application phase. In contrast to the first case study, we did not
pursue a stratified sampling approach because a priori knowledge concerning the existence
of specific types of M&A news stories was not available. Instead, we pragmatically divided
the entire Reuters corpus into two distinct parts based on the publication date of news
items. All 12,187 training news items were published prior to 1997/04/01. Consequently,
we validated the classification knowledge acquired during knowledge discovery using 8,408
news stories published between 1997/04/01 and 1997/08/19. Analogous to the first case
study, we employed DIAsDEM Workbench 2.2 introduced in Chapter 5 and published
core results of this case study, such as the concept-based XML DTD and a sample of
marked-up news items, on the Web site http://ka.rsten-winkler.de/thesis.

Knowledge Discovery Phase Subsequently, we describe the KDT steps performed in
this case study along the DIAsDEM knowledge discovery process introduced in Chap-
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Table 6.11: Overview of Text Archives Used in the Reuters News Case Study

Text Archive Property Knowledge Discovery Phase Knowledge Application Phase

Language English English
Text Unit Granularity Sentence Sentence
Number of Documents 12,187 8,408
Number of Text Units 122,256 86,238
Publication Date of Documents 1996/08/20–1997/03/31 1997/04/01–1997/08/19

ter 4. Analogous to the first case study, we interactively created a fully parameterized
KDT process flow (cf. Definition 13 on page 61) in conformance with Algorithm 4.9 on
page 149. To that end, we selected, parameterized, executed, and recorded appropriate
KDT tasks within DIAsDEM Workbench. The resulting case-specific, fully parame-
terized KDT process flow was represented by a DIAsDEM batch script.

1. Pre-processing of text documents

a) Text document import : As indicated above, the Reuters corpus is formated
in an early version of NewsML, the XML-based News Markup Language (see
Geroimenko, 2004, p. 103). Using a dedicated DIAsDEM Workbench task,
we transformed all relevant news stories, namely, the ones annotated with both
topic code C181 and region code USA, from their NewsML representation into
a text archive (cf. Definition 3 on page 58).

b) Creation of text units: Analogous to the first case study, the initial news stories
were decomposed into sentences and text units, respectively, as introduced in
Subsection 4.2.1. Thereby, the initially imported text archive was converted
into an intermediate text archive (cf. Definition 21 on page 75). The input
parameters to this task comprised 1,886 English, mostly domain-independent
abbreviations containing periods and 29 mostly domain-independent regular
expressions masking periods not serving as sentence boundaries.

c) Tokenization of text units : All intermediate text units were tokenized to sep-
arate words from punctuation marks (cf. Subsection 4.2.1). Furthermore, 185
regular expressions were designed to convert instances of relevant named entity
types into their canonical forms suitable for named entity extraction. More-
over, the input parameters of this task included 691 domain-specific, frequently
occurring multi-token terms, such as names of important organizations, stock
exchanges, and news papers.

d) Extraction of named entities : As in the first case study, the named entity
extractor of DIAsDEM Workbench was employed to identify instances of
the named entity types listed in Table 6.12, as discussed in Subsection 4.2.2.
Again, a considerable effort was put into designing domain-specific compos-
ite named entity patterns to identify persons, companies, units of companies,
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Table 6.12: Named Entity Types Extracted in the Reuters News Case Study

Named Entity Type Description, Example, and Resources Utilized in Extraction

amount of money Canonical forms (e.g., "107100000 USD") of amounts of money, like
"$107.1 million", were extracted by two regular expressions.

amount of money per share Amounts of money per share, such as "134 USD per share", were ex-
tracted using two regular expressions.

number of shares Expressions denoting numbers of shares, like "820000 common shares"

or "34500 shares", were extracted using one regular expression.
percentage Canonical forms (e.g., "8.5%" or "51.8%") of percentages, like "8.5

pct" or "51.8 percent", were extracted using one regular expression.
date Canonical forms (e.g., "????-07-02" or "1996-??-??") of dates, like

"July 2" or "1996", were extracted using one regular expression. Miss-
ing date components are represented by question marks.

stock exchange 154 major stock exchanges (e.g., "London Stock Exchange" or "NAS-

DAQ") were extracted by means of one regular expression.
date period Extracted dates were combined into date periods (e.g., "between June

25 and August 20") using four composite named entity patterns.
place Country names, which occur in a particular context, and large cities

from all over the world (e.g., "Quito") were extracted using 30 place
indicator terms, 24,009 names of places, and 659 place name affixes.

profession A list of 397 frequently occurring job titles (e.g., "President and CEO"

or "Board Member") was utilized to extract them from news stories.
person Person names (e.g., "Don Box") were initially identified using 190 person

name indicator terms, 43 academic titles, 10,737 forenames, 49 middle
initials, 97,296 surnames, 372 surname suffixes, and 25 name affixes.
They were subsequently combined with nearby occurring places and job
titles into composite named entities of type person (e.g., "President
and Chief Executive Officer Don Box") using 81 composite named
entity patterns.

company Company names (e.g., "KKR", "Gillette", or "Elbit") were initially
identified using 1,458 organization indicator terms, 302 organization
name suffixes (e.g., "Corp." and "Ltd."), 418 organization affixes, one
regular expression, and 2,294 names of large international corporations.
They were subsequently combined with nearby occurring places into
composite named entities of type company (e.g., "Israel’s Elbit")
using 49 composite named entity patterns.

unit of company Extracted company names, places, and percentages were combined into
named entities of type unit of company, such as "Batus Inc., a unit

of BAT Industries Inc.", using 66 composite named entity patterns.
equity stake Extracted company names, places, number of shares, and per-

centages were combined into named entities of type equity stake,
such as "stake in Centennial Celluar Corp to 4.91 percent or

453,900 common shares", using 84 composite named entity patterns.

and equity stakes. In contrast to the Commercial Register domain, identifying
company names posed a particular challenge because many company names
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occurring in news stories were not suffixed with abbreviated legal forms. To
address this issue, we adopted the two stage, so-called learn - filter - apply
approach to recognizing company names (Volk and Clematide, 2001). In step
1, company names were identified based on legal form suffixes (e.g., "Corp") to
discover, for example, "Culbro Corp [said]" in the second exemplary news
item of Table 6.10. All identified names were tokenized and heuristically fil-
tered to recognize informal, abbreviated names of companies, like "Culbro

[discusses]", in step 2.
e) Lemmatization of text units : We employed TreeTagger (cf. Schmid, 1994,

1999) without any parameter modifications to lemmatize natural language
words (cf. Subsection 4.2.3). In addition, 90 search and replace statements
were utilized to pragmatically deal with frequently occurring English clitics
(e.g., replacing "won ’ t" with "will not") and important phrasal verbs (e.g.,
combining the two tokens "close at" into a single token "close_at").

f) Word sense disambiguation: Despite the relatively narrow M&A domain, dis-
ambiguating the sense of lemmatized tokens (see Subsection 4.2.3) was neces-
sary because a few terms were highly ambiguous when considered as an out-of-
context token. For example, the term "interest" has at least three relevant
domain-specific senses (i.e., borrowing, stake, and involvement). Hence, we
defined contextual terms and sense definitions, respectively, to disambiguate
18 important tokens (cf. Manning and Schütze, 1999, pp. 242-244).

g) Establishment of the controlled vocabulary : Subsequent to the preceding pre-
processing steps, the intermediate training archive comprised 24,313 distinct
terms not counting named entity placeholders and numeric tokens. Analogous
to the first case study, an auxiliary DIAsDEM Workbench task created an
initial, domain-specific controlled vocabulary containing terms with a collec-
tion frequency of 50 or greater. This vocabulary was manually refined into a
thesaurus by defining synonyms, removing irrelevant terms, and adding new
terms. The final thesaurus comprised 734 terms including 227 text unit descrip-
tors. 205 of 607 non-descriptors were mapped onto the descriptor representing
various lines of businesses (e.g., apparel, automotive, and banking).

2. Iterative clustering of text unit vectors: The parameter settings and results for the
eight clustering iterations performed in this case study are listed in Table 6.13. We
executed the following five knowledge discovery tasks in each clustering iteration:

a) Vectorization of text units: The text unit descriptor weighting scheme intro-
duced in Subsection 4.2.5 was used to map text units onto text units vectors.

b) Selecting, parameterizing, and executing the clustering algorithm in discovery
mode: For the reasons discussed in the context of the Commercial Register
case study, we deliberately selected the bisecting k-means algorithm (Steinbach
et al., 2000) in combination with the cosine similarity. To appropriately set
the input parameter k in the first iteration, we conducted the preliminary
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Table 6.13: Summary of Pattern Discovery in Eight Clustering Iterations

Cluster- Input Parameter Dominant Rare Maximum Minimum Minimum
ing Iter- Text of Bisecting Descriptor Descriptor Descriptor Descriptor Cluster

ation Units k-Means Threshold Threshold Coverage Dominance Size

1 122,256 k = 800 0.8 0.005 0.10 0.25 50
2 92,509 k = 800 0.8 0.010 0.15 0.25 30
3 87,193 k = 1, 600 0.8 0.010 0.20 0.20 25
4 73,877 k = 1, 600 0.8 0.020 0.25 0.20 20
5 65,517 k = 1, 600 0.8 0.020 0.25 0.15 15
6 56,336 k = 800 0.8 0.050 0.30 0.15 15
7 45,646 k = 800 0.8 0.050 0.35 0.15 10
8 38,863 k = 400 0.8 0.100 0.35 0.15 10

Cluster- Clustering Number of Clusters (Number of Text Units Therein) after Stop
ing Iter- Quality Automated Ranking Interactive Screening Iterative

ation Index Acceptable Unacceptable Acceptable Unacceptable Clustering

1 0.313 57 (26,548) 743 (95,708) 47 (29,747) 753 (92,509) No
2 0.291 35 (5,909) 765 (86,600) 31 (5,316) 769 (87,193) No
3 0.312 141 (14,295) 1,459 (72,898) 126 (13,316) 1,474 (73,877) No
4 0.320 138 (9,790) 1,462 (64,087) 117 (8,360) 1,483 (65,517) No
5 0.312 217 (10,470) 1,383 (55,047) 192 (9,181) 1,408 (56,336) No
6 0.340 260 (17,977) 540 (38,359) 157 (10,690) 643 (45,646) No
7 0.340 239 (12,794) 561 (32,852) 131 (6,783) 669 (38,863) No
8 0.377 254 (24,100) 146 (14,763) 108 (10,390) 292 (28,473) Yes

experiments described in the preceding case study and obtained similar results.
Hence, the number of desired text unit clusters was initially set to k = 800 to
find both compact and well separated clusters. In analogy with the iterative
clustering approach taken in the Commercial Register case study, the number
of desired text unit clusters was raised to k = 1600 to discover more specific
semantic concepts in iterations 3 through 5. Finally, the cluster number was
decreased to k = 400 to identify even the most general remaining concepts in
the final iteration 8.

c) Automatic ranking of text unit clusters and automatic default labeling of ac-
ceptable clusters: The DIAsDEM Workbench task Monitor Cluster
Quality 2.2 was employed to automatically rank the resulting clusters by
decreasing quality and to generate default labels of qualitatively acceptable
clusters. Table 6.13 summarizes the user-specified, iteration-specific settings
of our DIAsDEM cluster quality criteria as well as the resulting number of
acceptable and unacceptable clusters. We relaxed the cluster quality require-
ments step-by-step to discover more specific concepts in earlier iterations and
rather general concepts in later iterations.

d) Interactive screening of cluster ranking and interactive review of default clus-
ter labels: All automatically generated cluster quality decisions and their de-
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fault cluster labels were manually reviewed and modified, if necessary, using
the Cluster Label Editor tool of DIAsDEM Workbench. In general,
we pursued the same interactive screening strategy as motivated in the first
case study to discover the most specific semantic markup possible. Further-
more, cluster labels were also prefixed by category identifiers chosen by the
human expert (e.g., the prefix A110 of A110_AcquisitionOfCompany) to fa-
cilitate querying the semantically marked-up XML documents. Moreover, our
interactive review was intentionally limited to qualitatively acceptable clusters
in the first seven iterations. In addition, the largest qualitatively unaccept-
able cluster comprising 5,715 text units featuring no text unit descriptor at
all was inspected in iteration 1. In the final iteration 8, all remaining 400
clusters were carefully inspected. Unlike Commercial Register entries, how-
ever, M&A news stories typically comprise noisy sentences representing neither
frequently occurring nor relevant concepts. In particular, certain statements
issued by spokespersons, analysts, or other stakeholders (e.g., "I think it’s

definitely a possibility," Paris said.) are meaningless when focus-
ing on the text unit level and thereby – intentionally (cf. Definition 1) – ig-
noring the context. To avoid passing members of clusters comprising only
noisy text units or text units without any descriptor occurrence to the next
iteration, they were temporarily marked as acceptable and assigned the label
Z999_IrrelevantTopic. Prior to establishing the concept-based XML DTD in
the post-processing phase, however, the corresponding 16,753 text units were
eventually marked as qualitatively unacceptable to prevent the useless seman-
tic XML tag <Z999_IrrelevantTopic> from inclusion in the DTD. The results
of this interactive review are listed in Table 6.13.

e) Update of the intermediate text archive: The task Tag Text Units of DIAs-
DEM Workbench was executed at the end of each clustering iteration to
persistently store the results in the intermediate text archive. After the eighth
iteration, 28,473 (23.3%) of altogether 122,256 text units remained assigned to
qualitatively unacceptable clusters. Nevertheless, the iterative clustering phase
of our knowledge discovery process was terminated by the KDT expert because
the perceived progress in discovering new semantic concepts was only marginal
in this iteration.

3. Post-processing of discovered patterns

a) Establishment of the concept-based XML DTD : Subsequent to clustering itera-
tion 8, a concept-based XML document type definition was derived (cf. Subsec-
tion 4.4.2 on page 138). Generated with a minimum attribute support of 10%,
this concept-based XML document type definition is named in correspondence
with its root element NewsItemOnMergersAndAcquisitions. It comprises 217
elements that represent a variety of semantic concepts, from specific ones (e.g.,
C500_EquityStakeIsHoldForInvestmentPurposes) to broader ones (e.g.,
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Table 6.14: Semantically Marked-Up XML Document Comprising the First Exemplary
Reuters News Item (cf. Table 6.10 on Page 196)

1: <?xml version="1.0" encoding="ISO-8859-1"?>

2: <!DOCTYPE NewsItemOnMergersAndAcquisitions

SYSTEM "NewsItemOnMergersAndAcquisitions.dtd">

3:
4: <NewsItemOnMergersAndAcquisitions>

5: <TaggedDocument>

6: <A110_AcquisitionOfCompany Company="ID: 2; Name: Gillette [AND] ID: 3; Name:

Duracell">USA: Gillette to acquire Duracell - WSJ.

</A110_AcquisitionOfCompany>

7: Gillette Co is near an agreement to buy Duracell International Inc in a stock

swap worth over $7 billion, the Wall Street Journal reported Thursday.

8: The newspaper, quoting anonymous sources, said the deal could be announced

Thursday, adding that neither company would comment on the story.

9: <O230_OwnershipOfShares Company="ID: 13; Name: Duracell [AND] ID: 14; Name:

Kohlberg Kravis Roberts & Co" Percentage="34%" Place="New York">Duracell’s

largest shareholder is the New York buyout firm Kohlberg Kravis Roberts & Co,

which holds 34 percent of the company, the article said.

</O230_OwnershipOfShares>

10: <E800_NoComments Company="ID: 16; Name: KKR">KKR declined to comment when

contacted by Reuters late Wednesday.</E800_NoComments>

11: <B003_DealValue_StockDeal AmountOfMoney="58.85 USD" Company="ID: 21; Name:

Duracell">The deal values Duracell shares at $58.85 each, or 0.904 share of

Gillette.</B003_DealValue_StockDeal>

12: <K510_ExpectedEffectOfDeal_FinancialPerformance Company="ID: 24; Name:

Gillette">The Journal said the transaction includes the assumption of debt

and is expected to immediately be accretive to Gillette’s earnings.

</K510_ExpectedEffectOfDeal_FinancialPerformance>

13: <E800_NoComments>Neither company was immediately available to comment on the

article.</E800_NoComments>

14: <P010_ContactInformation_Newsroom Place="New York">-New York Newsdesk (212)

859-1610 </P010_ContactInformation_Newsroom>

15: </TaggedDocument>

16: </NewsItemOnMergersAndAcquisitions>

R100_StatementOrCommentAboutDeal). In addition, a DTD documentation
template was automatically generated that contains a list of valid attributes
and five exemplary text units for each DTD element. Both the concept-based
XML DTD and the corresponding DTD documentation template are electron-
ically accessible (see Appendix A on page 217).

b) Semantic XML tagging of text documents : The input text archive was con-
verted into 12,187 semantically marked-up XML documents conforming to the
concept-based XML DTD NewsItemOnMergersAndAcquisitions.dtd derived
beforehand. Three semantically marked-up XML documents, which correspond
to the exemplary news stories listed in Table 6.10 on page 196, are listed in
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Table 6.15: Semantically Marked-Up XML Document Comprising the Second Exemplary
Reuters News Item (cf. Table 6.10 on Page 196)

1: <?xml version="1.0" encoding="ISO-8859-1"?>

2: <!DOCTYPE NewsItemOnMergersAndAcquisitions

SYSTEM "NewsItemOnMergersAndAcquisitions.dtd">

3:
4: <NewsItemOnMergersAndAcquisitions>

5: <TaggedDocument>

6: <E100_Talks Company="ID: 1; Name: Culbro">USA: Culbro discusses acquiring

cigar maker.</E100_Talks>

7: Culbro Corp said Tuesday the company and its General Cigar unit are in

preliminary talks that could lead to the acquisiton of privately held

Villazon & Co Inc which makes premium cigars in Florida and Honduras.

8: <J210_ExpectationsAboutCompletionOfAcquisition Company="ID: 10;

Name: Culbro">The Culbro statement gave no terms for the acquisition, but

did say it anticipates completing the transaction by year end.

</J210_ExpectationsAboutCompletionOfAcquisition>

9: <P010_ContactInformation_Newsroom Place="New York">- New York Newsdesk

212-859-1610.</P010_ContactInformation_Newsroom>

10: </TaggedDocument>

11: </NewsItemOnMergersAndAcquisitions>

Table 6.14, Table 6.15, and Table 6.16, respectively. Analogous to the first
case study, a 5% random sample of semantically marked-up XML documents
is electronically accessible (see Appendix A on page 217).

Finally, we drew a random sample comprising 1,222 (1%) of altogether 122,256 se-
mantically marked-up text units to evaluate the quality of the generated semantic XML
markup (cf. Section 6.1). Due to his background in business administration, the author
was capable of serving again as a domain expert and assessed the markup quality of
this text unit sample using the Tagging Quality Evaluator 2.2 tool of DIAsDEM
Workbench. Columns 2 and 3 of Table 6.17 on page 205 summarize the results of the
quality assessment in the knowledge discovery phase. The quality of XML tag names and
XML tag attributes in marked-up M&A news stories is certainly not as high as the re-
sults achieved in our Commercial Register case study. With 0.95 confidence, for example,
the XML tag name accuracy is in the interval [0.7856; 0.8298]. Focusing on the markup
correctness of text units enclosed in semantic XML tags slightly improves the results.
For instance, the XML tag name precision and recall are in the intervals [0.8029; 0.8566]
and [0.8280; 0.8793], respectively, with 0.95 confidence. A protocol of the entire quality
assessment procedure is electronically available (see Appendix A on page 217).

Knowledge Application Phase In the second phase of our framework, we applied the
classification knowledge discovered in phase 1 to semantically annotate 8,408 news items
contained in the application text archive. To that end, the following tasks were edited and
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Table 6.16: Semantically Marked-Up XML Document Comprising the Third Exemplary
Reuters News Item (cf. Table 6.10 on Page 196)

1: <?xml version="1.0" encoding="ISO-8859-1"?>

2: <!DOCTYPE NewsItemOnMergersAndAcquisitions

SYSTEM "NewsItemOnMergersAndAcquisitions.dtd">

3:
4: <NewsItemOnMergersAndAcquisitions>

5: <TaggedDocument>

6: USA: Houghten target of complaint out of merger.

7: Houghten Pharmaceuticals Inc said Friday that a complaint has been filed

against the company and its officers in a dispute over its acquisition of

ChromaXome Corp.

8: The complaint was filed by Michael Dickman and Katie Thompson, the founders

of ChromaXome, who accuse Houghten of denying them access to and employment

with ChromaXone.

9: The company said the complaint also accuses it of preventing Dickman and

Thompson from obtaining certain consideration in connection with the

acquisition.

10: The complaint was filed in Superior Court in San Diego.

11: Houghten said the claims are without merit.

12: <O100_LineOfBusiness Company="ID: 22; Name: Houghten">Houghten develops and

uses combinatorial chemistry and other molecular diversity technologies to

pursue the discovery of small-molecule drug therapies.</O100_LineOfBusiness>

13: ChromaXome, now a wholly owned subisidiary, was a privately held

combinatorial company.

14: </TaggedDocument>

15: </NewsItemOnMergersAndAcquisitions>

deleted, respectively, in the DIAsDEM batch script recorded during knowledge discovery,
as explained in Section 4.5 on page 148:

1. Pre-processing of text documents: 8,408 Reuters news items assigned the topic code
C181 and region code USA published between 1997/04/01 and 1997/08/19 were
imported into a text archive.

2. Iterative classification of text unit vectors: All tasks recorded when performing eight
clustering iterations in the knowledge discovery phase were edited and removed, re-
spectively, to transform them into eight corresponding classification iterations, as
introduced in Section 4.5 on page 148. The original batch script was edited exactly
as explained in the context of the knowledge application phase of the Commercial
Register case study in the preceding subsection. In particular, we edited the tasks
related to vectorization of text units and execution of the clustering algorithm in
application mode. All workbench tasks responsible for automatic ranking of text
unit clusters, and automatic default labeling of acceptable clusters, as well as inter-
active screening of cluster ranking, and interactive review of default cluster labels
were deleted in the batch script.
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Table 6.17: Results of the Semantic XML Markup Quality Assessment in the Reuters
News Case Study

Knowledge Discovery Phase Knowledge Application Phase
Quality Measure for Value in Approximate 95% Value in Approximate 95%
XML Tag Names Sample Confidence Interval Sample Confidence Interval

Number of Text Units 1,222 862
Proportion of True Positives 0.5106 [0.4826; 0.5387] 0.4919 [0.4585; 0.5253]
Proportion of False Positives 0.1047 [0.0876; 0.1219] 0.1276 [0.1053; 0.1499]
Proportion of True Negatives 0.2971 [0.2714; 0.3227] 0.2610 [0.2317; 0.2903]
Proportion of False Negatives 0.0876 [0.0717; 0.1034] 0.1195 [0.0978; 0.1411]
XML Tag Name Accuracy 0.8077 [0.7856; 0.8298] 0.7529 [0.7241; 0.7817]
XML Tag Name Precision 0.8298 [0.8029; 0.8566] 0.7940 [0.7597; 0.8283]
XML Tag Name Recall 0.8536 [0.8280; 0.8793] 0.8046 [0.7707; 0.8384]

Knowledge Discovery Phase Knowledge Application Phase
Quality Measure for Value in Approximate 95% Value in Approximate 95%
XML Tag Attributes Sample Confidence Interval Sample Confidence Interval

True Number of Named Entities 1,441 1,036
XML Attribute Accuracy 0.7946 [0.7737; 0.8154] 0.7712 [0.7457; 0.7968]
XML Attribute Precision 0.9030 [0.8867; 0.9193] 0.9142 [0.8956; 0.9328]
XML Attribute Recall 0.8161 [0.7958; 0.8364] 0.7934 [0.7684; 0.8185]

3. Post-processing of discovered patterns: The task that established the concept-based
XML DTD was removed from the original knowledge discovery batch script.

Conforming to Algorithm 4.11 on page 151, the modified batch script was executed
without any human intervention by DIAsDEM Workbench Batch Script Client.
Subsequently, we drew a random sample comprising 862 (1%) of altogether 86,238 se-
mantically marked-up text units in the application text archive to evaluate the markup
quality, as discussed in Section 6.1. Analogous to the knowledge discovery phase, the
author evaluated the markup quality of this random text unit sample. The assessment re-
sults are listed in columns 4 and 5 of Table 6.17. As expected when applying classification
knowledge to test data, the quality measures for XML tag names and XML tag attributes
are slightly worse than the results obtained in the knowledge discovery phase. With 0.95
confidence, for example, the knowledge application XML tag name accuracy is in the
interval [0.7241; 0.7817] whereas this quality measure is in the interval [0.7856; 0.8298]
during knowledge discovery. The entire quality assessment protocol can be electronically
accessed (see Appendix A on page 148).

Usage Scenario and Lessons Learned Although the markup quality achieved in the
Reuters M&A news case study is not as high as in the Commercial Register entries case,
organizations in the finance and banking industry may clearly benefit from semantically
marked-up news stories in the scenarios discussed in Section 1.3 on page 9. In particular,
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the activity of retrieving information about competitors from the ever growing archive of
M&A news items is largely facilitated by semantic XML markup along with appropriate
XML query languages. Another case of semantic markup usage was presented by Schulz
et al. (2003). Ultimately, this study aimed at predicting the effect of news stories on
the share prices of the affected companies. As part of the text pre-processing phase,
Schulz et al. (2003) employed the DIAsDEM framework to semantically annotate the
input news stories. For each discovered semantic concept, a new binary input variable
was subsequently derived to make explicit the occurrence of the respective concept in
individual news stories for the purpose of training a text classifier.

In addition to the five generic lessons learned in the Commercial Register case study, we
finally summarize two noteworthy lessons learned in the context of marking up Reuters
news items on U.S. mergers an acquisitions:

• Extract relevant domain-specific named entities! When starting a new semantic
XML tagging project, we strongly recommend identifying all named entity types of
particular importance. The benefits of augmenting semantic concepts and XML tag
names, respectively, with truly relevant named entity types (e.g., unit of company
and equity stake in the M&A domain) shall nevertheless outweigh the efforts re-
quired to parameterize and perhaps to extend the named entity extractor accord-
ingly. In general, however, solely relying on the extraction of domain-independent
named entity types is an inferior approach to semantic text annotation.

• Remove noisy text units in iteration one! Unlike the highly controlled language of
Commercial register entries, news stories typically do contain noisy text units that
represent neither frequent nor relevant concepts. Based on the experiences gained
in this case, we recommend temporarily marking noisy text units as acceptable,
assigning them a label like Z999_IrrelevantTopic, and thereby excluding them
from the input data of subsequent clustering iterations. Prior to establishing the
concept-based DTD, however, noisy text units must be marked as unacceptable.

Additionally, issues to be addressed by future research and future development of DIAs-
DEM Workbench are outlined in Section 7.2.

6.3 Summary

This chapter has been devoted to the third phase of our specific research process described
in Section 1.5. By processing two distinct real-world text archives, we have evaluated both
the DIAsDEM framework for semantic XML tagging of domain-specific text archives and
the research prototype DIAsDEM Workbench. To that end, we have initially estab-
lished a set of criteria that reflect different aspects of semantic XML markup quality. In
particular, we have distinguished between the quality of XML tag names and the quality
of XML tag attributes by defining specific measures of accuracy, precision, and recall.
Finally, we have presented the entire process and the results of semantically enhancing
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two text archives from the competitive intelligence domain: German Commercial Reg-
ister entries and English Reuters news stories featuring U.S. mergers and acquisitions.
Although both archives fulfill the prerequisites of applying our framework, they differ in
the scope of vocabulary used, the inherent semantic diversity, and the variation in phras-
ing. Consequently, the case study results vary between excellently marked-up Commercial
Register entries and acceptably tagged Reuters M&A news stories. Nevertheless, we have
successfully demonstrated the applicability of our conceptual framework and the research
prototype to transform large, domain-specific text archives into semantically tagged XML
archives.
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Our research on semantic XML tagging of domain-specific text archives is summarized
in the next section. Section 7.1 also emphasizes the contribution of this work along
the research questions posed in the introduction. To envision valuable extensions and
enhancements of the DIAsDEM framework, three important areas of future research are
identified in Section 7.2. Finally, Section 7.3 comprises a few concluding remarks.

7.1 Summary and Contribution

Facing ever increasing volumes of computer-accessible textual data, semantic XML tag-
ging of text archives creates value by providing embedded metadata. In this work, names
of semantic XML tags explicitly convey informal metadata by concisely describing con-
cepts that domain experts typically associate with marked-up text units, which represent
structural document parts (e.g., sentences or paragraphs). Optionally, attributes of se-
mantic XML tags make explicit named entities (e.g., names of companies) occurring in
marked-up text units. The markup syntax is defined in a concept-based XML document
type definition, and its meaning is informally specified in the DTD documentation.

Organizations benefit from exploiting semantic metadata in two broad ways. Firstly,
semantic XML markup tends to improve the effectiveness and efficiency of information
retrieval. Secondly, semantic XML markup facilitates applications that leverage semantic
metadata in texts, such as document warehousing and information integration.

Can techniques for knowledge discovery in textual databases be employed to
convert large archives comprising domain-specific text documents of homoge-
neous content into semantically marked-up XML documents?

This primary research objective, as posed in Section 1.4, has been accomplished by (i)
establishing a conceptual framework for semantic XML tagging of domain-specific text
archives, (ii) developing a research prototype that implements the entire framework, and
(iii) evaluating the markup quality by processing real-world text archives. Collectively, the
new conceptual framework, the research prototype system, and the conducted experiments
constitute the contribution of this work to research in information systems.

In phase one of the two-phase framework, an interactive knowledge discovery process
discovers and semantically labels concepts that occur at the text unit level of plain texts,
derives a concept-based XML document type definition based on identified, frequently
occurring concepts and prevailing named entity types, as well as semantically tags text
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documents to enable quality assessment. In the second phase termed knowledge applica-
tion, large volumes of thematically similar text documents are automatically tagged by
utilizing the classification knowledge acquired in phase one.

As introduced in Section 1.4, the primary research question stated above entails the
following six secondary research questions. For each of them, we henceforth outline our
proposed solutions:

1. How to discover frequently recurring thematic concepts at the text unit level? Unsu-
pervised learning is utilized in the pattern discovery step of our DIAsDEM knowl-
edge discovery process. Subsequent to extensive text pre-processing, clustering al-
gorithms that satisfy framework-specific selection criteria are iteratively executed
to find clusters of text unit vectors, whose members represent semantically sim-
ilar text units. Unlike the conventional approach to unsupervised learning, text
unit vectors are repeatedly clustered with gradually reduced input data, varying
parameter settings, and possibly different clustering algorithms. In each iteration,
a clustering algorithm is selected, parameterized, and executed. Framework-specific
cluster quality criteria are employed to distinguish between qualitatively acceptable
and unacceptable text unit clusters. Members of acceptable ones do not constitute
input data to the next iteration. Due to this iterative clustering approach, both
specific and general, as well as more and less frequent concepts can be discovered.

2. How to assign semantic, content-descriptive labels to identified thematic concepts?
A semantic cluster label concisely describes the concept that domain experts typi-
cally associate with text units assigned to the corresponding cluster. To facilitate the
creation of high-quality semantic markup, we intentionally take a semi-automated
approach to cluster labeling. To automatically generate the default label for a qual-
itatively acceptable text unit cluster, all dominant descriptors occurring therein
are identified, ordered by decreasing descriptor dominance, concatenated using the
underscore character, and prefixed with "DEFAULT_". Subsequently, label sugges-
tions are interactively approved or rejected (i.e., corrected) by the domain expert.
Ultimately, labels of acceptable clusters serve as names of semantic XML tags.

3. How to extract domain-specific named entities from text units? Subsection 2.2.2
has revealed that this research question can be considered solved by the information
extraction research community for the scope of this work. Machine learning and
fully automated techniques significantly reduced the necessary efforts of knowledge
engineers to establish and maintain extensive repositories of information extraction
rules. Consequently, we have not addressed named entity extraction in this work.
Instead, we have proposed utilizing existing techniques to extract named entities.

4. How to establish a domain-specific, concept-based XML document type definition
that reflects the thematic structure on the text unit level by enumerating frequently
occurring thematic concepts and associated named entity types? During knowledge
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discovery, a conceptual document structure is established in the post-processing step
by (i) enumerating the distinct semantic concepts identified during pattern discov-
ery, (ii) collecting the concept-specific set of extracted named entity types for each
semantic concept, and finally (iii) applying a user-supplied attribute support thresh-
old to remove noise from the concept-specific lists of named entity types. Creating
the concept-based XML DTD from a conceptual document structure involves five
major steps, each of which performs basic string concatenations.

5. How to automatically convert text documents into semantically annotated XML
documents by marking up text units according to the concept-based XML DTD? Our
KDT process discovers classification knowledge in the form of frequently occurring
semantic concepts at the text unit level. This classification knowledge is exploited
to transform input text archives into semantically tagged XML documents that con-
form to a common, concept-based XML document type definition. In addition, a
parameterized KDT process flow is created in the knowledge discovery phase. If
this sequence of parameterized, non-interactive KDT algorithms is executed in the
knowledge application phase, thematically similar text documents are automatically
marked up without any human intervention at all.

6. How to evaluate the quality of automatically created semantic XML markup? Qual-
ity assessment is performed from the perspective of users of semantically marked-up
XML documents who take the concept-based DTD as given. The distinction be-
tween correct and erroneous markup requires comparing a random sample of auto-
matically generated markup with the correct markup that would have been assigned
by a human annotator, who is only allowed to select tags from the concept-based
DTD. To account for different aspects of semantic XML markup quality, framework-
specific measures of accuracy, precision, and recall have been proposed to assess the
quality of XML tag names and XML tag attributes.

Our research prototype system DIAsDEM Workbench supports the entire frame-
work for semantic tagging of domain-specific text archives, namely, the interactive knowl-
edge discovery phase and the automated, batch-oriented knowledge application phase.
The notion of KDT process flows as a link between these two phases is operationalized by
a workbench-specific scripting language. The Java-based client/server-application com-
prises a server component that executes DIAsDEM Workbench tasks, each of which
encapsulates a KDT algorithm or a group of similar ones, as requested by client applica-
tions. A graphical user interface enables domain and KDT experts to interactively work
in the semi-automated knowledge discovery phase. The knowledge application phase of
our framework is also supported by a command-line batch client.

We conducted experiments with two real-world text archives from the competitive in-
telligence domain: German Commercial Register entries and English Reuters news stories
featuring U.S. mergers and acquisitions. These archives fulfill the prerequisites of apply-
ing our framework, but they differ in the scope of vocabulary used, the inherent semantic
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diversity, and the variation in phrasing. Hence, the case study results vary between ex-
cellently tagged Commercial Register entries and acceptably marked-up Reuters M&A
news stories. To sum up, we successfully demonstrated the applicability of our framework
and the research prototype DIAsDEM Workbench to transform domain-specific text
archives into semantically marked-up XML documents. Partial results of the experimental
evaluation are electronically accessible, as detailed in Appendix A.

7.2 Future Research

In this section, recommendations are given to guide forthcoming research on semantic
XML tagging of domain-specific text archives. The areas of future research considered
worth exploring are (i) methods of structuring the concept-based XML document type
definition, (ii) temporal aspects of discovered knowledge, and (iii) approaches to automat-
ing the knowledge discovery phase of our framework. These areas of future research are
motivated in the following three subsections.

7.2.1 Structuring the Concept-Based XML DTD

Our proposed framework is intentionally focused on creating semantically marked-up XML
documents with non-overlapping tags. In addition, the concept-based XML DTD does not
impose any structural constraints on the sequence of XML tags within marked-up docu-
ments. To overcome this initial limitation, two questions are worth being addressed by
future research. Firstly, how to further structure the currently enumerative, concept-based
XML document type definition? Secondly, how to address the shortcomings inherent to
XML document type definitions by replacing them, for instance, by XML Schema (cf.
World Wide Web Consortium, 2001) definitions.

Concerning the first issue of structure discovery, nested XML tags can, for example, be
introduced by relaxing the restriction of one text unit layer per document and introducing
the notion of multi-level annotation (cf. Bayerl et al., 2003a). One way of creating nested
semantic XML tags is to decompose texts into multiple text unit layers and to semantically
tag them on different levels of structural granularity (e.g., sentences, paragraphs, and
sections). This approach requires modifying our notion of conceptual document structures.
We have discussed approaches to schema discovery in marked-up texts in Section 2.4. To
incorporate a suitable method into our framework, one needs to assess the applicability
of existing schema discovery techniques to infer a structured DTD from semantically
marked-up XML documents with ordered and/or nested tags.

Furthermore, knowledge discovery techniques can be utilized to discover, for example,
groups of structurally similar XML documents (e.g., cf. Helmer, 2007) or frequently oc-
curring sequences of semantic XML tags. To make explicit the most likely ordering of
semantic tags, Winkler and Spiliopoulou (2002) outlined initial thoughts on establishing a
probabilistic DTD as part of the DIAsDEM framework. A probabilistic DTD takes the
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fact into consideration that DTD elements are derived by data mining techniques, which
are subject to errors, and thus includes statistical properties of DTD elements.

With respect to the second issue of structure representation, XML document type defi-
nitions “have some deficiencies that may prevent certain important classes of applications
from accomplishing their goals” (Melton and Buxton, 2006, p. 100). These deficiencies in-
clude the inability to specify certain types of limitations on the content (e.g., the sequence
of child elements in an element defined to have mixed content) as well as the inability
to define the data types required for both attribute values and element content. XML
Schema (see World Wide Web Consortium, 2001) addresses these limitations, which are
particularly relevant in the context of information integration, by supporting restrictive
structural and data type constraints on XML documents. Incorporating the notion of
concept-based XML Schema definitions in our framework requires a modification of con-
ceptual document structures and research into deriving a concept-based XML Schema
definition from semantically marked-up XML documents (e.g., cf. Hegewald et al., 2006;
Bex et al., 2007) that comprise ordered and/or nested XML tags.

Finally, combining our notion of informal semantic annotation and research into learning
ontologies as formal representations of semantics from text (Fensel, 2004; Cimiano, 2006)
is another promising research direction. This research direction aims at providing explicit
and formal semantic XML markup to facilitate automated knowledge sharing and reuse
between various human and artificial agents (cf. Fensel, 2004, p. 4).

7.2.2 Temporal Aspects of Discovered Knowledge

Our framework is designed to identify a priori unknown, frequently occurring concepts at
the text unit level by means of iterative clustering in the initial knowledge discovery phase.
Subsequently, the discovered classification knowledge is utilized for semantic XML tagging
in the automated knowledge application phase. In classification theory, it is typically
assumed that labeled training cases are randomly, independently, and identically drawn
samples from a stationary test distribution (cf. Weiss et al., 2005, p. 53). As we employ
unsupervised learning to initially discover both concepts and labeled training cases, the
training text archive is implicitly assumed to be a randomly, independently, and identically
drawn sample from the stationary application archive.

As Weiss et al. (2005) emphasized, however, real-world text collections tend to change
over time. Moreover, commercial applications, such as semantic XML markup to gain
competitive intelligence, often require to apply a trained classifier to make predictions
on a stream of future samples that may vary over time (Forman, 2006, p. 252). This
time-varying component of classification tasks is often referred to as concept drift (e.g.,
see references of Forman, 2006). Nevertheless, as Weiss et al. concluded, it can often be
expected that the nature of documents remains relatively stable over a time frame, which
is sometimes relatively short, such that classification methods are applicable. Over longer
periods, the learning process needs to be repeated on the basis of an updated random
sample of training documents, which adequately reflects the topic changes over time.
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Kriegel et al. (2007, pp. 90–91) discussed future trends in data mining and identified,
among other focus research areas, temporal aspects of discovered knowledge as an impor-
tant challenge to the research community. Incorporating the notion of concept drift into
our framework for semantic XML tagging constitutes a promising research direction as
well. Potential research questions include, but are not limited to, (i) the identification of
the presence of concept drift in domain-specific text archives during knowledge discovery
and application, (ii) the design of methods to measure the effect of drifting concepts on
markup quality during knowledge application, and (iii) the development of techniques to
automatically trigger an update of classification knowledge instead of repeating the entire
knowledge discovery phase.

Aimed at modeling and tracking temporal cluster transitions, Spiliopoulou et al. (2006)
presented the framework MONIC for monitoring cluster transitions. The authors em-
ployed DIAsDEM Workbench in their case study.

7.2.3 Towards Automated Knowledge Discovery

The DIAsDEM framework comprises an intentionally semi-automated and interactive
knowledge discovery phase. As detailed in Section 4.6, six types of human domain knowl-
edge are recommended for incorporation into the KDT process. In particular, three text
pre-processing tasks and three iterative text unit clustering tasks require human exper-
tise to ensure a high markup quality during the automated knowledge application phase.
To overcome the necessity to allocate often scarce and mostly costly human resources to
semantic XML tagging projects, substituting human efforts by automated pre-processing
and iterative clustering techniques is one important direction for forthcoming research.
The quality of semantic XML markup, however, must not be worse than the quality
obtained when employing the semi-automated KDT approach.

When discussing future trends in data mining, Kriegel et al. (2007, p. 92) concluded
that there will be “a lot to gain and a lot to study in preprocessing for data mining in
the next years.” In our framework, establishing and maintaining a controlled vocabulary
typically requires domain-specific expertise. Hence, one important aspect of automating
the text pre-processing step during knowledge discovery is related to solving the open
research challenge (cf. Zhou, 2007, pp. 247–249) of automatically learning and/or updating
high-quality taxonomies, thesauri, and ontologies that are qualitatively comparable to
their human-built counterparts. Another promising direction of future research aims at
enhancing the text pre-processing by means of anaphora resolution as part of named
entity extraction, automated and highly precise word sense disambiguation, as well as
the correction of spelling errors and line-breaking hyphens. Given the results of our case
studies, the quality of semantic XML tag names and XML tag attributes is likely to
increase when advanced, automated NLP methods are incorporated into our framework.

Finally, reducing the human expert efforts in the iterative clustering step of the knowl-
edge discovery phase constitutes another interesting research area. One future data mining
trend, as stated by Kriegel et al. (2007, p. 93), is “increased usability”of knowledge discov-
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ery algorithms. In our context, research on automating the selection and parameterization
of clustering algorithms in each clustering iteration is a rewarding challenge. This involves
the automated discovery of both specific and general, as well as more and less frequent
concepts. In particular, this research challenge is framed by the prerequisite that results
of the iterative text unit clustering have to be meaningful in the eyes of human domain
experts. Besides automatically identifying qualitatively acceptable text unit clusters,
overcoming the suggested interactive review of automatically generated semantic cluster
labels poses another research question: How to automatically generate truly meaningful
labels, like the ones created by humans, instead of merely extracting and concatenating
content-descriptive terms from text units assigned to a cluster? Newman et al. (2007) and
Mei et al. (2007) presented initial thoughts on this issue. After all, cluster labels serve as
semantic XML tag names. Therefore, they have to be meaningful, comprehensible, and
self-explanatory to humans in describing the aboutness, the topicality, or the subject of
semantically marked-up text units.

7.3 Concluding Remarks

When researching the effect of text search and analytics on corporate business intelligence
systems, Russom (2007, p. 31) concluded that “semi-structured and unstructured data
sources for data warehouses will increase dramatically in the next three years (up 21–81%
depending on source type).” In this context, our work on utilizing knowledge discovery
techniques to transform domain-specific text archives into semantically marked-up XML
documents contributes towards adding value to huge volumes of textual data. Thus, our
approach makes a modest contribution to alleviate the hunger for knowledge of today’s
information society in times of information overload (cf. Naisbitt, 1982, pp. 11–38).

Based on the systems development research methodology proposed by Nunamaker et al.
(1991), this work was intentionally conducted in a highly multi-disciplinary way to take
both an information systems and a knowledge discovery perspective on semantic text
annotation. Consequently, we preferred research breadth over depth when establishing a
conceptual framework for semantic XML tagging of domain-specific texts, developing a
research prototype, and evaluating the markup quality in two case studies. Diving into the
depth of specific topics, such as improving named entity recognition or including advanced
NLP pre-processing, is one of many starting points for future research.
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A Contents of the Supplementary Web
Site

Visit http://ka.rsten-winkler.de/thesis to access the supplementary Web site. Firstly, the
research prototype DIAsDEM Workbench 2.2 is available for download via this Web
site under the GNU general public license. Secondly, the most important results of both
case studies described in detail in Section 6.2 are provided. For each case study, the
following documents are accessible using the user name guest and the password Welc0me:

1. Results of the knowledge discovery phase

• Automatically generated documentation of the concept-based XML document
type definition

• Automatically generated concept-based XML document type definition
• Protocol of the manual evaluation of tagging quality
• Results of the manual evaluation of tagging quality
• Random sample of semantically marked-up XML documents and the corres-

ponding auxiliary DIAsDEM documents (cf. Winkler, 2007, pp. 18–19)

2. Results of the knowledge application phase

• Protocol of the manual evaluation of tagging quality
• Results of the manual evaluation of tagging quality
• Random sample of semantically marked-up XML documents and the corres-

ponding auxiliary DIAsDEM documents (cf. Winkler, 2007, pp. 18–19)





B Specifications of Abstract Data
Types

B.1 ADT Notation, Primitive Data Types, and Arrays

In the remainder of this appendix chapter, abstract data types are specified using abstract
models (Dale and Walker, 1996, pp. 13–14). Abstract models specify the semantics of
the abstract data type being defined in terms of operations provided by primitive data
types or other ADTs. Concretely, operations are defined by specifying the signatures1

of the respective procedures or functions. For each operation, preconditions state what
the respective procedure or functions can assume on entry. If the preconditions hold
before the execution, the respective operation will terminate and all operation-specific
postconditions will hold after the execution (Loeckx et al., 1996, pp. 13–14).

Let S := {s1, s2, . . . , s|S|} denote an arbitrary, finite alphabet of symbols and charac-
ters, respectively. In algorithms and specifications of abstract data types, we utilize the
primitive data types Boolean, Integer, Real, and Char that are defined as follows:

• x: Boolean ↔ x ∈ {true, false}

• x: Integer ↔ x ∈ N ∪ {0,−1,−2, . . .}

• x: Real ↔ x ∈ R

• x: Char ↔ x ∈ S

Built into most programming languages, arrays2 are named collections of typed com-
ponents, each of which can be accessed by specifying its position in the collection (Dale
and Walker, 1996, p. 194). For reasons of clarity and simplicity, arrays are considered as
primitive data types in this work, independent of whether their components are instances

1Notation: Let Ti, where i ∈ N, denote a primitive or abstract data type defined in this appendix chapter.
The signature of function f, which has j ∈ N∪{0} input parameters x1, x2, . . . , xj and returns a value of
type Tj+1, is denoted by f(x1: T1, x2: T2, . . . , xj: Tj): Tj+1. Analogously, p(x1: T1, x2: T2, . . . , xj: Tj)
denotes the signature of procedure p, which has j input parameters x1, x2, . . . , xj .

2Notation: Let T denote a primitive or abstract data type defined in this appendix chapter. The
primitive data type that represents an array comprising components of type T is denoted by T[]. Let
x: T[] be a variable that represents an array of type T. A new array of size i ∈ N is instantiated by the
expression x := T[i]. Individual array components are denoted by x[j], where j ∈ N and j ≤ i. The
constant x.size denotes the invariant size of the instantiated array x.
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of primitive or abstract data types. The size of an array and the number of components,
respectively, cannot be altered once it is instantiated.

B.2 ADT for Strings

Abstract Data Type: String

Data: String s represents either an empty sequence s := ε or a non-empty sequence of
characters s := 〈s1, s1, . . . , s|s|〉, where si: Char and i = 1, 2, . . . , |s|.

Operations:

• create(sinit: 〈s1, s1, . . . , si〉) constructs a new string from a character literal. Preconditions:
i ∈ N and sj : Char, where j = 1, 2, . . . , i. Postcondition: s := sinit. Note: To simplify
notation, strings can also be constructed by assigning a character literal to a String-typed
variable like s: String := "character literal".

• char(i : Integer) : Char returns the ith character of the string. Precondition: i = 1, 2,
. . . , |s|. Postcondition: char(i) := si.

• chars(i: Integer, j: Integer): String returns a substring. Preconditions: i = 1, 2, . . . , |s| and
j = i, i + 1, . . . , |s|. Postcondition: chars(i, j) := 〈si, si+1, . . . , sj〉.

• length(): Integer returns the length of the string. Precondition: None. Postcondition: If
the string is an empty sequence, length() := 0. Otherwise, length() := |s|.

B.3 ADT for Vectors

Abstract Data Type: Vector

Data: Vector v := [υ1, υ2, . . . , υn]T is an n-dimensional vector, where v ∈ R
n and n ∈ N.

Operations:

• create(vinit: Real[]) constructs a new vector. Precondition: vinit.size > 0. Postcondition:
n := vinit.size and υ1 := vinit[1], υ2 := vinit[2], . . . , υn := vinit[n].

• component(i : Integer): Real returns the ith vector component. Precondition: i = 1, 2,
. . . , n. Postcondition: component(i) := υi.

• dimensions() : Integer returns the number of vector dimensions. Precondition: None.
Postcondition: dimensions() := n.

B.4 ADT for Text Documents

Abstract Data Type: TextDocument

Data: Text document ť: String is a sequence of characters.
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Operations:

• create(ťinit: String) constructs a new text document. Precondition: None. Postcondition:
ť := ťinit.

• char(i : Integer) : Char returns the ith character of this text document. Precondition:
i = 1, 2, . . . , ť.length(). Postcondition: char(i) := ť.char(i).

• chars(i : Integer, j : Integer) : String. Preconditions: i = 1, 2, . . . , ť.length() and j =
i, i + 1, . . . , ť.length(). Postcondition: chars(i, j) := ť.chars(i, j).

• content(): String returns the textual content of this text document. Precondition: None.
Postcondition: content() := ť.

• length(): Integer returns the length of this text document. Precondition: None. Postcon-
dition: length() := ť.length().

B.5 ADT for Text Archives

Abstract Data Type: TextArchive

Data: Text archive ǎ := 〈ť1, ť2, . . . , ť|ǎ|〉 is a sequence of not necessarily distinct text
documents such that ťi: TextDocument, where i = 1, 2, . . . , |ǎ|.

Operations:

• create() constructs a new, empty text archive. Precondition: None. Postcondition: ǎ := ε.
• appendTextDocument(ťnew: TextDocument) appends a text document to the end of this

sequence of text documents. Precondition: None. Postcondition: Let i := |ǎ| denote the
length of this sequence prior to appending ťnew such that ťi+1 := ťnew. If i = 0, ǎ := 〈ťi+1〉.
Otherwise, ǎ := 〈ť1, ť2, . . . , ťi, ťi+1〉.

• size(): Integer returns the number of text documents in this text archive. Precondition:
None. Postcondition: size() := |ǎ|.

• textDocument(i : Integer) : TextDocument returns the ith text document of this text
archive. Precondition: i = 1, 2, . . . , |ǎ|. Postcondition: textDocument(i) := ťi.

B.6 ADT for Text Units

Abstract Data Type: TextUnit

Data: Text unit ǔ: String is a sequence of contiguous characters ǔ := ť.chars(i, j), where
ť : TextDocument is the parent text document, i = 1, 2, . . . , ť.length(), and j =
i, i + 1, . . . , ť.length().

Operations:

• create(ťinit: TextDocument, iinit: Integer, iinit: Integer, ) constructs a new text unit. Pre-
conditions: i = 1, 2, . . . , ťinit.length() and j = i, i + 1, . . . , ťinit.length(). Postconditions:
ǔ := ťinit.chars(iinit, jinit), i := iinit, j := jinit.

221



B Specifications of Abstract Data Types

• char(i : Integer) : Char returns the ith character of this text unit. Precondition: i =
1, 2, . . . , ǔ.length(). Postcondition: char(i) := ǔ.char(i).

• chars(i : Integer, j : Integer) : String. Preconditions: i = 1, 2, . . . , ǔ.length() and j =
i, i + 1, . . . , ǔ.length(). Postcondition: chars(i, j) := ǔ.chars(i, j).

• content(): String returns the textual content of this text unit. Precondition: None. Post-
condition: content() := ǔ.

• endIndex(): Integer returns the index j of the last character of this text unit in its parent
text document. Precondition: ǔ 6= ε. Postcondition: endIndex() := j.

• length(): Integer returns the length of this text unit. Precondition: None. Postcondition:
length() := ǔ.length().

• startIndex(): Integer returns the index i of the first character of this text unit in its parent
text document. Precondition: ǔ 6= ε. Postcondition: startIndex() := i.

B.7 ADT for Text Unit Layers

Abstract Data Type: TextUnitLayer

Data: Text unit layer ř := 〈ǔ1, ǔ2, . . . , ǔ|̌r|〉 is a sequence of not necessarily contiguous,
non-overlapping text units in the parent text document such that ǔi : TextUnit,
where i = 1, 2, . . . , |̌r|.

Operations:

• create() constructs a new, empty text unit layer. Precondition: None. Postcondition:
ř := ε.

• create(ťinit: TextDocument) constructs a new text unit layer by decomposing text docu-
ment ťinit into |̌r| structural text units 〈ǔ1, ǔ2, . . . , ǔ|̌r|〉 whose granularity depends on
the concrete implementation of this constructor. Precondition: None. Postcondition:
ř := 〈ǔ1, ǔ2, . . . , ǔ|̌r|〉.

• size(): Integer returns the number of text units in this text unit layer. Precondition: None.
Postcondition: size() := |̌r|.

• textUnit(i: Integer): TextUnit returns the ith text unit of this text unit layer. Precondi-
tion: i = 1, 2, . . . , |̌r|. Postcondition: textUnit(i) := ǔi.

B.8 ADT for Concepts

Abstract Data Type: Concept

Data: Represented by the symbol ǒ: String, a concept is a mental reference or thought
that domain experts typically associate with a group of semantically similar text
units. A concept is associated with the alphanumeric label ľ: String that concisely
describes the mental reference or thought.

Operations:
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• create(ǒinit: String, ľinit: String) constructs a new concept. Precondition: None. Postcon-
ditions: ǒ := ǒinit and ľ := ľinit.

• label(): String returns the alphanumeric label of this concept. Precondition: None. Post-
condition: label() := ľ.

• symbol(): String returns the symbol of this concept. Precondition: None. Postcondition:
symbol() := ǒ.

B.9 ADT for Sets of Concepts

Abstract Data Type: SetOfConcepts

Data: Set of concepts O := {o1, o2, . . . , o|O|} contains concepts such that oi : Concept,
where i = 1, 2, . . . , |O|.

Operations:

• create() constructs a new, empty set of concepts. Precondition: None. Postcondition:
O = ∅.

• add(onew: Concept) adds a concept to this set of concepts. Precondition: None. Postcon-
dition: O := O ∪ onew.

• elements() : Concept[] returns an array comprising all concepts contained in this set of
concepts or null if this set is empty. Precondition: None. Postcondition: If O = ∅,
elements() := null. Otherwise, elements() := x, where x: Concept[] := Concept[ |O| ] and
x[1] := o1, x[2] := o2, . . . , x[ |O| ] := o|O|.

• size(): Integer returns the number of concepts in this set of concepts. Precondition: None.
Postcondition: size() := |O|.

B.10 ADT for Named Entity Types

Abstract Data Type: NamedEntityType

Data: Represented by the symbol p̌: String, a named entity type represents an abstract
class or a generic numerical expression. A named entity type is associated with an
alphanumeric label ľ: String that concisely describes the abstract class or a generic
numerical expression.

Operations:

• create(p̌init: String, ľinit: String) constructs a new named entity type. Precondition: None.
Postconditions: p̌ := p̌init and ľ := ľinit.

• label(): String returns the alphanumeric label of this named entity type. Precondition:
None. Postcondition: label() := ľ.

• symbol() : String returns the symbol of this named entity type. Precondition: None.
Postcondition: symbol() := p̌.
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B.11 ADT for Sets of Named Entity Types

Abstract Data Type: SetOfNamedEntityTypes

Data: Set of named entity types P := {p1, p2, . . . , p|P|} contains named entity types such
that pi: NamedEntityType, where i = 1, 2, . . . , |P|.

Operations:

• create() constructs a new, empty set of named entity types. Precondition: None. Post-
condition: P = ∅.

• create(Pinit : NamedEntityType[]) constructs a new set of named entity types. Pre-
condition: None. Postcondition: P = {p | p : NamedEntityType := Pinit[i] ∀ i =
1, 2, . . . ,Pinit.size}.

• add(pnew: NamedEntityType) adds a named entity type to this set of named entity types.
Precondition: None. Postcondition: P := P ∪ pnew.

• elements(): NamedEntityType[] returns an array comprising all named entities types con-
tained in this set of named entities types or null if this set is empty. Precondition: None.
Postcondition: If P = ∅, elements() := null. Otherwise, elements() := x, where x :
NamedEntityType[] := NamedEntityType[ |P| ] and x[1] := p1, x[2] := p2, . . . , x[ |P| ] :=
p|P|.

• size(): Integer returns the number of named entities types in this set of named entities
types. Precondition: None. Postcondition: size() := |P|.

B.12 ADT for Named Entities

Abstract Data Type: NamedEntity

Data: Named entity e := (p: NamedEntityType, ě: String) is a 2-tuple comprising named
entity type p and the canonical form ě of the instantiated named entity type p.

Operations:

• create(pinit: NameEntityType, ěinit: String) constructs a new named entity. Precondition:
None. Postconditions: p := pinit and ě := ěinit.

• label(): String returns the alphanumeric label of named entity type p. Precondition: None.
Postcondition: label() := p.label().

• type() : NamedEntityType returns the type of this named entity. Precondition: None.
Postcondition: type() := p.

• value() : String returns the canonical form of this named entity. Precondition: None.
Postcondition: value() := ě.
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B.13 ADT for Sets of Named Entities

Abstract Data Type: SetOfNamedEntities

Data: Set of named entities E := {e1, e2, . . . , e|E|} contains named entities such that
ei: NamedEntity, where i = 1, 2, . . . , |E|.

Operations:

• create() constructs a new, empty set of named entities. Precondition: None. Postcondi-
tion: E = ∅.

• add(enew: NamedEntity) adds a named entity to this set of named entities. Precondition:
None. Postcondition: E := E ∪ enew.

• elements(): NamedEntity[] returns an array comprising all named entities contained in
this set of named entities or null if this set is empty. Precondition: None. Postcondition:
If E = ∅, elements() := null. Otherwise, elements() := x, where x: NamedEntity[] :=
NamedEntity[ |E| ] and x[1] := e1, x[2] := e2, . . . , x[ |E| ] := e|E|.

• size(): Integer returns the number of named entities in this set of named entities. Precon-
dition: None. Postcondition: size() := |E|.

B.14 ADT for Semantically Marked-Up Text Units

Abstract Data Type: SmuTextUnit

Data: Semantically marked-up text unit û := (ǔ: TextUnit, o: Concept, E: SetOfNamed-
Entities) is a 3-tuple comprising the original text unit ǔ, the domain-specific concept
o that domain experts typically associate with text units similar to text unit ǔ, and
the set of named entities E extracted from text unit ǔ.

Operations:

• create(ǔinit: TextUnit, oinit: Concept, Einit: SetOfNamedEntities) constructs a new seman-
tically marked-up text unit. Precondition: None. Postconditions: ǔ := ǔinit, o := oinit,
and E := Einit.

• concept(): Concept returns the concept associated with this text unit. Precondition: None.
Postcondition: concept() := o.

• distinctNamedEntityTypes(): NamedEntityType[] returns an array containg the distinct
named entity types identified in this text unit. Precondition: None. Postcondition:
distinctNamedEntityTypes() := namedEntityTypes().elements().

• namedEntities() : SetOfNamedEntities returns the set of named entities extracted from
this text unit. Precondition: None. Postcondition: namedEntities() := E.

• namedEntityTypes(): SetOfNamedEntityTypes returns the set of distinct named entity
types extracted from this text unit. Precondition: None. Postcondition: If P = ∅,
namedEntityTypes() := null. Otherwise, let x : SetOfNamedEntityTypes as well as y :
NamedEntityTypes[] := NamedEntityTypes[ |P| ] and y[1] := p1, y[2] := p2, . . . , y[ |P| ] :=
p|P| such that namedEntityTypes() := x.create(y).
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• textUnit(): TextUnit returns the marked-up text unit. Precondition: None. Postcondition:
textUnit() := ǔ.

B.15 ADT for Semantically Marked-Up Text Unit Layers

Abstract Data Type: SmuTextUnitLayer

Data: Given text unit layer ř: TextUnitLayer, a semantically marked-up text unit layer
r̂ := 〈û1, û2, . . . , û|̂r|〉 is a sequence of semantically marked-up text units such that
ûi: SmuTextUnit and ûi.textUnit() = ř.textUnit(i), where i = 1, 2, . . . , ř.size().

Operations:

• create() constructs a new, empty semantically marked-up text unit layer. Precondition:
None. Postcondition: r̂ := ε.

• appendSmuTextUnit(ûnew : SmuTextUnit) appends a semantically marked-up text unit
to the end of this sequence of semantically marked-up text units. Precondition: None.
Postcondition: Let i := |̂r| denote the length of this sequence prior to appending ûnew

such that ûi+1 := ûnew. If i = 0, r̂ := 〈ûi+1〉. Otherwise, r̂ := 〈û1, û2, . . . , ûi, ûi+1〉 .
• size(): Integer returns the number of semantically marked-up text units in this semantically

marked-up text unit layer. Precondition: None. Postcondition: size() := |̂r|.
• smuTextUnit(i: Integer): SmuTextUnit returns the ith semantically marked-up text unit of

this semantically marked-up text unit layer. Precondition: i = 1, 2, . . . , |̂r|. Postcondition:
smuTextUnit(i) := ûi.

B.16 ADT for Semantically Marked-Up Text Documents

Abstract Data Type: SmuTextDocument

Data: Given the text document ť: TextDocument, a semantically marked-up text docu-
ment t̂ := (ť : TextDocument, r̂ : SmuTextUnitLayer) is a 2-tuple comprising the
text document ť and the semantically marked-up text unit layer r̂ that represents a
decomposition of text document ť into semantically marked-up text units.

Operations:

• create(ťinit: TextDocument, r̂init: SmuTextUnitLayer) constructs a new semantically mark-
ed-up text document. Precondition: None. Postconditions: ť := ťinit and r̂ := r̂init.

• smuTextUnitLayer() : SmuTextUnitLayer returns the semantically marked-up text unit
layer. Precondition: None. Postcondition: smuTextUnitLayer() := r̂.

• textDocument(): TextDocument returns the semantically marked-up text document. Pre-
condition: None. Postcondition: textDocument() := ť.
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B.17 ADT for Semantically Marked-Up Text Archives

Abstract Data Type: SmuTextArchive

Data: Given the text archive ǎ : TextArchive, a semantically marked-up text archive
â := 〈t̂1, t̂2, . . . , t̂|ǎ|〉 is a sequence of not necessarily distinct semantically marked-
up text documents such that t̂i : SmuTextDocument and t̂i.textDocument() =
ǎ.textDocument(i), where i = 1, 2, . . . , ǎ.size().

Operations:

• create() constructs a new, empty semantically marked-up text archive. Precondition:
None. Postcondition: â := ε.

• appendSmuTextDocument(t̂new : SmuTextDocument) appends a semantically marked-up
text document to the end of this sequence of semantically marked-up text documents.
Precondition: None. Postcondition: Let i := |â| denote the length of this sequence
prior to appending t̂new such that t̂i+1 := t̂new. If i = 0, â := 〈t̂i+1〉. Otherwise,
â := 〈t̂1, t̂2, . . . , t̂i, t̂i+1〉.

• size() : Integer returns the number of semantically marked-up text documents in this
semantically marked-up text archive. Precondition: None. Postcondition: size() := |â|.

• smuTextDocument(i: Integer): SmuTextDocument returns the ith semantically marked-up
text document of this semantically marked-up text archive. Precondition: i = 1, 2, . . . , |â|.
Postcondition: smuTextDocument(i) := t̂i.

• smuTextUnit(i: Integer, j: Integer): SmuTextUnit returns the jth semantically marked-up
text unit of the ith semantically marked-up text document of this semantically marked-up
text archive.Preconditions: i = 1, 2, . . . , |â| and j = 1, 2, . . . , t̂i.smuTextUnitLayer().size().
Postcondition: smuTextUnit(i, j) := t̂i.smuTextUnitLayer().smuTextUnit(j).

• smuTextUnitLayerSize(i: Integer): Integer returns the number of semantically marked-up
text units in the semantically marked-up text unit layer of the ith semantically marked-up
text document of this semantically marked-up text archive. Precondition: i = 1, 2, . . . , |â|.
Postcondition: smuTextUnitLayerSize(i) := t̂i.smuTextUnitLayer().size().

B.18 ADT for Conceptual Document Structures

Abstract Data Type: ConceptualDocumentStructure

Data: Conceptual document structure ŝ := (̌l, o, p) is a 3-tuple comprising the alpha-
numeric label ľ : String that concisely describes the common theme of text docu-
ments covered by ŝ, the sequence o := 〈o1, o2, . . . , oi〉 of i ∈ N concepts such that
oj : Concept, where j = 1, 2, . . . , i, and the sequence of sets p := 〈P1, P2, . . . , Pi〉,
where Pj: SetOfNamedEntityTypes, that represent the types of named entities ex-
tracted from text units associated with concept oj.

Operations:
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• create(̌linit : String, ā: IntTextArchive, pAS : Real) constructs a new conceptual document
structure from the intermediate text archive ā. This operation enumerates all distinct
semantic concepts in ā that are represented by labels of qualitatively acceptable text unit
clusters, constructs the concept-specific set of extracted named entity types Pj for each
semantic concept oj , and applies the attribute support threshold pAS to remove noise
from the concept-specific lists of named entity types Pj . Precondition: ľinit, ā 6= null,
0 ≤ pAS ≤ 1. Postconditions: ľ := ľinit. The sequences o and p are constructed in
compliance with Definition 12 on page 61.

• contains(oinput : Concept) : Boolean checks whether concept oinput is contained in this
conceptual document structure. Precondition: None. Postcondition: If ∃ j such that
oj = oinput, contains(oinput) := true. Otherwise, contains(oinput) := false.

• validNamedEntities(oinput : Concept, Einput : SetOfIntNamedEntities) : SetOfNamed-
Entities returns the subset of Einput as a set of named entities, whose type is con-
tained in the set of named entity types associated with concept oinput. Precondition:
contains(oinput) := true. Postcondition: validNamedEntities(oinput, Einput) removes each
intermediate named entities from Einput whose named entity type is not contained in the
set of named entity types associated with concept oinput, converts the resulting set of in-
termediate named entities into the set of corresponding named entities, and returns the
latter set.

• xmlDocuments(â : SmuTextArchive) : String[] returns the collection of XML documents
that corresponds to the contents of the semantically marked-up archive â such that each
XML document conforms to the XML document type definition returned by xmlDtd().
Precondition: None. Postcondition: xmlDocuments(â) := x, where x: String[] denotes the
collection of semantically marked-up XML documents.

• xmlDtd(): String returns the concept-based XML document type definition that corre-
sponds to conceptual document structure ŝ. Precondition: None. Postcondition: xmlDtd()
:= x, where x: String denotes the concept-based XML document type definition.

B.19 ADT for KDT Algorithms

Abstract Data Type: KdtAlgorithm

Data: KDT algorithm g := (ň : String, p̌ : String) is a 2-tuple comprising the unique
algorithm name ň and the parameters p̌ as strings.

Operations:

• create(ňinit: String, p̌init: String) constructs a new KDT algorithm. Precondition: None.
Postconditions: ň := ňinit and p̌ := p̌init.

• name(): String returns the name of this KDT algorithm. Precondition: None. Postcondi-
tion: name() := ň.

• parameters(): String returns the parameters of this KDT algorithm. Precondition: None.
Postcondition: parameters() := p̌.
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B.20 ADT for KDT Process Flows

Abstract Data Type: KdtProcessFlow

Data: KDT process flow f := 〈g1, g2, . . . , g|f|〉 is a sequence of KDT algorithms such that
gi: KdtAlgorithm, where i = 1, 2, . . . , |f|.

Operations:

• create() constructs a new, empty KDT process flow. Precondition: None. Postcondition:
f := ε.

• appendKdtAlgorithm(gnew: KdtAlgorithm) appends a KDT algorithm to the end of this
sequence of KDT algorithms. Precondition: None. Postcondition: Let i := |f| denote
the length of this sequence prior to appending gnew such that gi+1 := gnew. If i = 0,
f := 〈gi+1〉. Otherwise, f := 〈g1, g2, . . . , gi, gi+1〉.

• kdtAlgorithm(i : Integer) : KdtAlgorithm returns the ith KDT algorithm of this KDT
process flow. Precondition: i = 1, 2, . . . , |f|. Postcondition: kdtAlgorithm(i) := gi.

• size(): Integer returns the number of KDT algorithm in this KDT process flow. Precondi-
tion: None. Postcondition: size() := |f|.

B.21 ADT for Tokens

Abstract Data Type: Token

Data: Token w̌: String is a sequence of characters that represents one natural language
word, one punctuation mark, one numeral, or any other atomic and semantic-
carrying character sequence.

Operations:

• create(w̌init : String) constructs a new token. Precondition: None. Postcondition: w̌ :=
w̌init.

• length(): Integer returns the length of this token. Precondition: None. Postcondition:
length() := w̌.length().

• content(): String returns the textual content of this token. Precondition: None. Postcon-
dition: content() := w̌.

B.22 ADT for Tokenized Text Units

Abstract Data Type: TokenizedTextUnits

Data: Given the text unit ǔ : TextUnit, tokenized text unit ü := 〈w̌1, w̌2, . . . , w̌|ü|〉 is
a sequence of tokens identified in text unit ǔ such that w̌i : Token, where i =
1, 2, . . . , |ü|. The set Wü := {w̌ | w̌: Token := ü[i], i = 1, 2, . . . , |ü|} contains all
distinct tokens identified in ü.
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Operations:

• create() constructs a new, empty tokenized text unit. Precondition: None. Postcondition:
ü := ε.

• create(ǔinit: TextUnit) constructs a new tokenized text unit by splitting text unit ǔ into
a sequence of |ü| tokens 〈w̌1, w̌2, . . . , w̌|ü|〉. Precondition: None. Postcondition: ü :=
〈w̌1, w̌2, . . . , w̌|ü|〉.

• contains(w̌: Token): Boolean checks whether the token w̌ is contained in this tokenized
text unit. Precondition: w̌ 6= null. Postcondition: If token w̌ ∈ Wü, contains(w̌) := true.
Otherwise, contains(w̌) := false.

• size() : Integer returns the number of tokens in this tokenized text unit. Precondition:
None. Postcondition: size() := |ü|.

• token(i: Integer): Token returns the ith token of this tokenized text unit. Precondition:
i = 1, 2, . . . , |ü|. Postcondition: token(i) := w̌i.

• tokens(i : Integer, j : Integer) : Token[]. Preconditions: i = 1, 2, . . . , ü.length() and j =
i, i + 1, . . . , ü.length(). Postcondition: Let x : Token[] := Token[j − i + 1] and x[1] :=
w̌i, x[2] := w̌i+1, . . . , x[j − i + 1] := w̌j such that tokens(i, j) := x.

B.23 ADT for Intermediate Named Entities

Abstract Data Type: IntNamedEntity

Data: Given the tokenized text unit ü: TokenizedTextUnit, intermediate named entity
ē := (p: NamedEntityType, ě: String, i: Integer, j : Integer, k : Integer) is a 5-tuple
comprising named entity type p, the canonical form ě of instantiated named entity
type p, and its unique identifier i, as well as the start token index j and the end
token index k, where j = 1, 2, . . . , ü.size() and k = j, j + 1, . . . , ü.size(), such that
ü.tokens(j, k) corresponds to the tokens that instantiate named entity type p in ü.

Operations:

• create(pinit : NameEntityType, ěinit : String, iinit : Integer, jinit : Integer, kinit : Integer) con-
structs a new named entity. Precondition: None. Postconditions: p := pinit, ě := ěinit,
i := iinit, j := jinit, and k := kinit.

• endTokenIndex(): Integer returns the end token index of this named entity in its parent
tokenized text unit. Precondition: None. Postcondition: endTokenIndex() := k.

• identifier(): Integer returns the identifier of this named entity. Precondition: None. Post-
condition: identifier() := i.

• isPlaceholder(w̌: Token): Boolean determines whether token w̌ is a named entity place-
holder. Precondition: None. Postcondition: If token w̌ is a named entity placeholder,
isPlaceholder(w̌) := true. Otherwise, isPlaceholder(w̌) := false.

• label(): String returns the alphanumeric label of named entity type p. Precondition: None.
Postcondition: label() := p.label().
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• placeholder() : Token returns a token that substitutes all tokens that instantiate this
intermediate named entity in its parent tokenized text unit. Precondition: None. Post-
condition: placeholder() uniquely identifies ē within the scope of its intermediate text
document.

• startTokenIndex(): Integer returns the start token index of this named entity in its parent
tokenized text unit. Precondition: None. Postcondition: startTokenIndex() := j.

• type() : NamedEntityType returns the type of this named entity. Precondition: None.
Postcondition: type() := p.

• value() : String returns the canonical form of this named entity. Precondition: None.
Postcondition: value() := ě.

B.24 ADT for Sets of Intermediate Named Entities

Abstract Data Type: SetOfIntNamedEntities

Data: The set of intermediate named entities Ē := {ē1, ē2, . . . , ē|Ē|} contains intermediate
named entities such that ēi: IntNamedEntity, where i = 1, 2, . . . , |Ē|.

Operations:

• create() constructs a new, empty set of intermediate named entities. Precondition: None.
Postcondition: Ē = ∅.

• add(ēnew: IntNamedEntity) adds an intermediate named entity to this set of intermediate
named entities. Precondition: None. Postcondition: Ē := Ē ∪ ēnew.

• contains(p: NamedEntityType): Boolean checks whether at least one intermediate named
entity of type p is contained in this set of intermediate named entities. Precondition:
p 6= null. Postcondition: Let the set Ēp = {ē | ē: IntNamedEntity ∈ Ē s.t. ē.type() = p}
contain all intermediate named entities of type p in this set. If |Ēp| > 0, contains(p) :=
true. Otherwise, contains(p) := false.

• elements(): IntNamedEntity[] returns an array comprising all intermediate named entities
contained in this set of intermediate named entities or null if this set is empty. Precon-
dition: None. Postcondition: If Ē = ∅, elements() := null. Otherwise, elements() := x,
where x: IntNamedEntity[] := IntNamedEntity[ |Ē| ] and x[1] := ē1, x[2] := ē2, . . . , x[ |Ē| ]
:= ē|Ē|.

• size(): Integer returns the number of intermediate named entities in this set of intermediate
named entities. Precondition: None. Postcondition: size() := |Ē|.

B.25 ADT for Text Unit Vectors

Abstract Data Type: TextUnitVector

Data: Text unit vector u ∈ R
n, where n ∈ N, is an n-dimensional vector. The component

υi ∈ R, where i = 1, 2, . . . , n, of text unit vector u := [υ1, υ2, . . . , υn]T represents the
weight of one text unit descriptor in the tokenized text unit mapped onto u.
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Operations:

• create(uinit: Real[]) constructs a new text unit vector. Precondition: uinit.size > 0. Post-
condition: n := uinit.size and υ1 := uinit[1], υ2 := uinit[2], . . . , υn := uinit[n].

• vector(): Real[] returns this new text unit vector. Precondition: None. Postcondition:
vector() := x, where x: Real[] := Real[n] and x[1] := υ1, x[2] := υ2, . . . , x[n] := υn.

B.26 ADT for Intermediate Text Units

Abstract Data Type: IntTextUnit

Data: Intermediate text unit ū := (ǔ: TextUnit, ü: TokenizedTextUnit, ~u: TextUnitVec-
tor, i: Integer, j : Integer, o: Concept, Ē: SetOfIntNamedEntities) is a 7-tuple com-
prising the original text unit ǔ, its processed, tokenized text unit ü, its text unit
vector ~u, its clustering iteration identifier i, its cluster identifier j, the domain-
specific concept o that domain experts typically associate with text unit ǔ, and the
set of intermediate named entities Ē identified in text unit ǔ.

Operations:

• create(ǔinit : TextUnit, üinit : TokenizedTextUnit, ~uinit : TextUnitVector, iinit : Integer, jinit :
Integer, oinit: Concept, Ēinit: SetOfIntNamedEntities) constructs a new intermediate text
unit. Precondition: None. Postconditions: ǔ := ǔinit, ü := üinit, ~u := ~uinit, i := iinit,
j := jinit, o := oinit, and Ē := Ēinit.

• cluster() : Integer returns the cluster identifier. Precondition: None. Postcondition:
cluster() := j.

• concept(): Concept returns concept o. Precondition: None. Postcondition: concept() := o.
• contains(vD : ControlledVocabularyTerm): Boolean checks whether the token associated

with vD is contained in the processed text unit of this intermediate text unit. Precondition:
vD 6= null. Postcondition: contains(vD) := ü.contains(vD.token()).

• contains(p: NamedEntityType): Boolean checks whether at least one named entity of type
p is contained in the set of intermediate named entities identified in this intermediate text
unit. Precondition: p 6= null. Postcondition: contains(p) := Ē.contains(p).

• disambiguateWordSenses() appends a sense tag, which indicates the concrete word sense,
to all tokens that are natural language words with multiple senses in the tokenized text
unit ü. Precondition: The specific implementation of this operation fully supports the
disambiguation of relevant word senses. Postcondition: All tokens that are relevant natural
language words with multiple senses in the tokenized text unit ü are appended by a sense
tag, which indicates the concrete word sense.

• identifyNamedEntities(P: SetOfNamedEntityTypes) identifies instantiations of named en-
tity types contained in the set P of domain-specific named entity types in the tokenized
text unit ü. For each discovered named entity, a corresponding intermediate named entity
is created and stored in Ē. Precondition: The specific implementation of this operation
fully supports the identification of all named entity types in P. Postcondition: Ē is first
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emptied and finally contains all identified interediate named entities. The tokenized text
unit ü is not modified.

• intNamedEntities(): SetOfIntNamedEntities returns the set of intermediate named enti-
ties. Precondition: None. Postcondition: intNamedEntities() := Ē.

• iteration(): Integer returns the clustering iteration identifier. Precondition: None. Post-
condition: iteration() := i.

• lemmatizeWords() replaces all tokens that are natural language words in the tokenized
text unit ü with their grammatical root forms. Precondition: The specific implementation
of this operation fully supports the lemmatization of all relevant tokens. Postcondition:
All tokens that are natural language words in the tokenized text unit ü are replaced with
their grammatical root forms.

• originalTextUnit(): TextUnit returns the original text unit. Precondition: None. Post-
condition: originalTextUnit() := ǔ.

• processedTextUnit(): TokenizedTextUnit returns the processed, tokenized text unit. Pre-
condition: None. Postcondition: processedTextUnit() := ü.

• replaceNamedEntities() replaces tokens that instantiate an identified intermediate named
entity in the tokenized text unit ü with the corresponding named entity placeholder. Pre-
condition: The tokenized text unit does not contain named entity placeholders. Postcondi-
tion: Tokens that instantiate the identified intermediate named entity ēi: IntNamedEntity
= Ē.elements()[i], where i = 1, 2, . . . , Ē.elements().size(), in the tokenized text unit ü are
replaced with named entity placeholder ēi.placeholder().

• textUnitVector(): TextUnitVector returns the text unit vector. Precondition: None. Post-
condition: textUnitVector() := ~u.

B.27 ADT for Intermediate Text Unit Layers

Abstract Data Type: IntTextUnitLayer

Data: Given text unit layer ř : TextUnitLayer, an intermediate text unit layer r̄ :=
〈ū1, ū2, . . . , ū|̄r|〉 is a sequence of intermediate text units such that ūi: IntTextUnit
and ūi.textUnit() = ř.textUnit(i), where i = 1, 2, . . . , ř.size().

Operations:

• create() constructs a new, empty intermediate text unit layer. Precondition: None. Post-
condition: r̄ := ε.

• appendIntTextUnit(ūnew : IntTextUnit) appends an intermediate text unit to the end of
this sequence of intermediate text units. Precondition: None. Postcondition: Let i := |̄r|
denote the length of this sequence prior to appending ūnew such that ūi+1 := ūnew. If
i = 0, r̄ := 〈ūi+1〉. Otherwise, r̄ := 〈ū1, ū2, . . . , ūi, ūi+1〉.

• intTextUnit(i: Integer): IntTextUnit returns the ith intermediate text unit of this interme-
diate text unit layer. Precondition: i = 1, 2, . . . , |̄r|. Postcondition: intTextUnit(i) := ūi.

• size(): Integer returns the number of intermediate text units in this intermediate text unit
layer. Precondition: None. Postcondition: size() := |̄r|.
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B.28 ADT for Intermediate Text Documents

Abstract Data Type: IntTextDocument

Data: Given the text document ť: TextDocument, an intermediate text document t̄ :=
(ť: TextDocument, r̄: IntTextUnitLayer) is a 2-tuple comprising the text document
ť and the intermediate text unit layer r̄ that represents a decomposition of text
document ť into intermediate text units.

Operations:

• create(ťinit : TextDocument, r̄init : IntTextUnitLayer) constructs a new intermediate text
document. Precondition: None. Postconditions: ť := ťinit and r̄ := r̄init.

• intTextUnitLayer(): IntTextUnitLayer returns the intermediate text unit layer. Precondi-
tion: None. Postcondition: intTextUnitLayer() := r̄.

• textDocument(): TextDocument returns the semantically marked-up text document. Pre-
condition: None. Postcondition: textDocument() := ť.

B.29 ADT for Intermediate Text Archives

Abstract Data Type: IntTextArchive

Data: Given text archive ǎ: TextArchive, an intermediate text archive ā := 〈t̄1, t̄2, . . . ,
t̄|ā|〉 is a sequence of not necessarily distinct intermediate text documents such
that t̄i : IntTextDocument and t̄i.textDocument() = ǎ.textDocument(i), where
i = 1, 2, . . . , ǎ.size().

Operations:

• create() constructs a new, empty intermediate text archive. Precondition: None. Post-
condition: ā := ε.

• appendIntTextDocument(t̄new : IntTextDocument) appends an intermediate text docu-
ment to the end of this sequence of intermediate text documents. Precondition: None.
Postcondition: Let i := |ā| denote the length of this sequence prior to appending t̄new such
that t̄i+1 := t̄new. If i = 0, ā := 〈t̄i+1〉. Otherwise, ā := 〈t̄1, t̄2, . . . , t̄i, t̄i+1〉.

• attributeSupport(o : Concept, p : NamedEntityType) : Real returns the attribute sup-
port (cf. Definition 40 on page 139) of p within intermediate text units of this inter-
mediate text archive assigned to o. Precondition: o, p 6= null. Postcondition: Let the
multi-set Āo = {{ū | ū : IntTextUnit := intTextUnit(j, kj) s.t. ū.concept() = o ∀ j =
1, 2, . . . , size() ∀ kj = 1, 2, . . . , intTextUnitLayerSize(j)}} contain all intermediate text
units herein assigned to o. If |Āo| > 0, attributeSupport(o, p) := |{{ū | ū: IntTextUnit ∈
Āo s.t. ū.contains(p)}}| / |Āo|. Otherwise, attributeSupport(o, p) := 0.

• intTextDocument(i: Integer): IntTextDocument returns the ith intermediate text docu-
ment of this intermediate text archive. Precondition: i = 1, 2, . . . , |ā|. Postcondition:
intTextDocument(i) := t̄i.
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• intTextUnit(i: Integer, j: Integer): IntTextUnit returns the jth intermediate text unit of
the ith intermediate text document of this intermediate text archive. Preconditions: i =
1, 2, . . . , |ā| and j = 1, 2, . . . , t̄i.intTextUnitLayer().size(). Postcondition: intTextUnit(i, j)
:= t̄i.intTextUnitLayer().intTextUnit(j).

• intTextUnitLayerSize(i: Integer): Integer returns the number of intermediate text units in
the intermediate text unit layer of the ith intermediate text document of this intermediate
text archive. Precondition: i = 1, 2, . . . , |ā|. Postcondition: intTextUnitLayerSize(i) :=
t̄i.intTextUnitLayer().size().

• size() : Integer returns the number of intermediate text documents in this intermediate
text archive. Precondition: None. Postcondition: size() := |ā|.

B.30 ADT for Controlled Vocabulary Terms

Abstract Data Type: ControlledVocabularyTerm

Data: The 4-tuple v := (w̌ : Token, i : Integer, d : Boolean, j : Integer) is a controlled
vocabulary term comprising the token w̌, a unique term identifier i, the boolean
variable d whose value indicates the term type, and the term identifier j of an
optionally associated controlled vocabulary term. If d = true, controlled vocabulary
term v is a text unit descriptor and j = null. Otherwise, controlled vocabulary term
v is a text unit non-descriptor and j 6= null.

Operations:

• create(w̌init: Token, iinit: Integer, dinit: Boolean, jinit: Integer) constructs a new controlled
vocabulary term. Precondition: None. Postconditions: w̌ := w̌init, i := iinit, d := dinit,
j := jinit.

• associatedTermId(): Integer returns the identifier of the associated controlled vocabulary
term. Precondition: None. Postcondition: associatedTermId() := j.

• id(): Integer returns the identifier. Precondition: None. Postcondition: id() := i.
• isDescriptor(): Boolean returns the type indicator. Precondition: None. Postcondition:

isDescriptor() := d.
• token(): Token returns the token. Precondition: None. Postcondition: token() := w̌.

B.31 ADT for Controlled Vocabularies

Abstract Data Type: ControlledVocabulary

Data: The non-empty set V := {v1, v2, . . . , v|V|} is a controlled vocabulary comprising the
controlled vocabulary terms vi: ControlledVocabularyTerm, where i = 1, 2, . . . , |V|,
such that any token is represented by at most one controlled vocabulary term,
and there exists one directly or indirectly associated text unit descriptor for each
text unit non-descriptor. All text unit descriptors in controlled vocabulary V
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are elements of the non-empty set VD = {v | v : ControlledVocabularyTerm ∈
V s.t. v.isDescriptor() = true} ⊆ V and satisfy the constraint vj.id() = j, where
vj: ControlledVocabularyTerm ∈ VD and j = 1, 2, . . . , |VD|.

Operations:

• create() constructs a new, empty controlled vocabulary. Precondition: None. Postcondi-
tion: V := ∅.

• add(vnew: Token) adds a new controlled vocabulary term and ensures the constraints on
unique term identifiers in the controlled vocabulary. Precondition: None. Postcondition:
V := V ∪ {vnew}.

• descriptor(i: Integer): ControlledVocabularyTerm returns the text unit descriptor vi ∈ VD.
Precondition: i = 1, 2, . . . , |VD|. Postcondition: descriptor(i) := vi.

• numberOfDescriptors(): Integer returns the number of text unit descriptors. Precondition:
None. Postcondition: numberOfDescriptors() := |VD| >= 0.

B.32 ADT for Text Unit Clusters

Abstract Data Type: TextUnitCluster

Data: Given intermediate text archive ā: IntTextArchive, the multi-set Ct,i = {{ū | ū:
IntTextUnit := ā.intTextUnit(j, kj) ∀ j = 1, 2, . . . , ā.size() ∀ kj = 1, 2, . . . , ā.int-
TextUnitLayerSize(j) s.t. ū.iteration() = t and ū.cluster() = i}} is a text unit
cluster comprising all intermediate text units in ā, whose text unit vectors are as-
signed to cluster i ∈ N in clustering iteration t ∈ N. If the domain expert accepts
(rejects) the automatically generated cluster quality assessment, qDE : Boolean as-
sumes the true (false) value. Otherwise, qDE takes the null value. If this cluster is
qualitatively acceptable and semantically labeled, o: Concept represents the concept
associated with this cluster. Otherwise, o assumes the null value.

Operations:

• create(āinit: IntTextArchive, tinit: Integer, iinit: Integer) constructs a new text unit cluster.
Precondition: None. Postcondition: Ct,i = {{ū | ū: IntTextUnit := āinit.intTextUnit(j, kj)
∀ j = 1, 2, . . . , āinit.size() ∀ kj = 1, 2, . . . , āinit.intTextUnitLayerSize(j) s.t. ū.iteration() =
tinit and ū.cluster() = iinit}}, t := tinit, and i := iinit, as well as qDE := null, and o := null.

• approveClusterQualityAssessment() sets the decision of a domain expert to approve the
automatically generated cluster quality assessment. Precondition: None. Postcondition:
qDE := true.

• concept(): Concept returns the associated concept. Precondition: None. Postcondition:
concept() := o.

• clusterQualityAssessmentIsApproved(): Boolean checks whether a domain expert has ac-
cepted the automatically generated cluster quality assessment. Precondition: None. Post-
condition: If qDE = true, clusterQualityAssessmentIsApproved() := true. Otherwise,
clusterQualityAssessmentIsApproved() := false.
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• clusterQualityAssessmentIsRejected(): Boolean checks whether a domain expert has re-
jected the automatically generated cluster quality assessment. Precondition: None. Post-
condition: If qDE = false, clusterQualityAssessmentIsRejected() := true. Otherwise,
clusterQualityAssessmentIsRejected() := false.

• descriptorCoverage(V: ControlledVocabulary, pRD : Real) : Real returns the ratio of the
number of distinct, non-rare descriptors occurring in intermediate text units of this text
unit cluster to the total number of text unit descriptors in controlled vocabulary V. Pre-
conditions: V 6= null, V.numberOfDescriptors() > 0, and pRD ∈ [0, 1]. Postcondition:
descriptorCoverage(V, pRD) := |{vD | vD: ControlledVocabularyTerm ∈ VD s.t. descrip-
torSupport(vD) > pRD}| / |VD|, where VD := {vD | vD : ControlledVocabularyTerm :=
V.descriptor(i) ∀ i = 1, 2, . . . ,V.numberOfDescriptors()}.

• descriptorDominance(V: ControlledVocabulary, pRD : Real, pDD : Real): Real returns the
ratio of the number of distinct, dominant descriptors occurring in intermediate text units of
this text unit cluster to the number of distinct, non-rare descriptors occurring in intermedi-
ate text units of this cluster. Preconditions: V 6= null, V.numberOfDescriptors() > 0, and
pRD, pDD ∈ [0, 1]. Postcondition: If descriptorCoverage(V, pRD) > 0, descriptorDomin-
ance(V, pRD, pDD) := |{vD | vD: ControlledVocabularyTerm ∈ VD s.t. descriptorSupport(
vD) > pDD}| / |{vD | vD: ControlledVocabularyTerm ∈ VD s.t. descriptorSupport(vD) >
pRD}|, where VD := {vD | vD : ControlledVocabularyTerm := V.descriptor(i) ∀ i =
1, 2, . . . ,V.numberOfDescriptors()}. Otherwise, descriptorDominance(V, pRD, pDD) := 0.

• descriptorSupport(vD : ControlledVocabularyTerm) : Real returns the support of vD in
this text unit cluster that is defined as the ratio of the number of intermediate text units
in Ct,i whose processed text unit contains the token vD.token() to the total number of
intermediate text units in Ct,i. Precondition: vD 6= null. Postcondition: If size() > 0,
descriptorSupport(vD) := |{{ū | ū : IntTextUnit ∈ Ct,i s.t. ū.contains(vD)}}| / |Ct,i|.
Otherwise, descriptorSupport(vD) := 0.

• isDominantDescriptor(vD: ControlledVocabularyTerm, pDD: Real): Boolean tests whether
text unit descriptor vD is dominant in this text unit cluster with respect to threshold pDD.
Preconditions: vD 6= null and pDD ∈ [0, 1]. Postcondition: If descriptorSupport(vD) ≥
pDD, isDominantDescriptor(vD, pDD) := true. Otherwise, isDominantDescriptor(vD, pDD)
:= false.

• isQualitativelyAcceptable(V: ControlledVocabulary, pRD : Real, pDD : Real, pmaxDC : Real,
pminDD: Real, pminCS: Integer): Boolean checks whether this text unit cluster is qualitatively
acceptable. Preconditions: V 6= null, V.numberOfDescriptors() > 0, pRD, pDD, pmaxDC,
pminDD ∈ [0, 1], and pminCS > 0. Postcondition: If Ct,i.descriptorCoverage(V, pRD) ≤
pmaxDC, Ct,i.descriptorDominance(V, pRD, pDD) ≥ pminDD, and Ct,i.size() ≥ pminCS, is-
QualitativelyAcceptable(V, pRD, pDD, pmaxDC, pminDD, pminCS) := true. Otherwise, isQual-
itativelyAcceptable(V, pRD, pDD, pmaxDC, pminDD, pminCS) := false.

• isRareDescriptor(vD: ControlledVocabularyTerm, pRD: Real): Boolean tests whether text
unit descriptor vD is rare in this text unit cluster with respect to threshold pRD. Pre-
conditions: vD 6= null and pRD ∈ [0, 1]. Postcondition: If descriptorSupport(vD) ≤ pRD,
isRareDescriptor(vD, pRD) := true. Otherwise, isRareDescriptor(vD, pRD) := false.

• qualityIndex(V : ControlledVocabulary, pRD : Real, pDD : Real, Ct : TextUnitClustering) :
Real returns the quality index of this text unit cluster. Preconditions: V 6= null, V.num-
berOfDescriptors() > 0, and pRD, pDD ∈ [0, 1]. Postcondition: qualityIndex(V, pRD, pDD,
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Ct) := 1/3 ·(1−descriptorCoverage(V, pRD)) +1/3 ·descriptorDominance(V, pRD, pDD) +
1/3·size()/Ct.numberOfIntTextUnits() ∈ [0; 1] if descriptorCoverage( V, pRD) > 0. Other-
wise, qualityIndex(V, pRD, pDD, Ct) := 1/3 · size()/Ct.numberOfIntTextUnits() ∈ [0; 1/3].

• rejectClusterQualityAssessment() sets the decision of a domain expert to reject the au-
tomatically generated cluster quality assessment. Precondition: None. Postcondition:
qDE := false.

• setConcept(oinit: Concept) sets the associated concept. Precondition: None. Postcondi-
tion: o := oinit. The concept of all intermediate text units assigned to this text unit cluster
is set accordingly.

• size() : Integer returns the number of intermediate text units in this text unit cluster.
Precondition: None. Postcondition: size() := |Ct,i|.

B.33 ADT for Text Unit Clusterings

Abstract Data Type: TextUnitClustering

Data: Given intermediate text archive ā: IntTextArchive and maximum cluster identifier
imax ∈ N in clustering iteration t ∈ N, the set Ct := {Ct,1, Ct,2, . . . Ct,imax

} is a text
unit clustering comprising all imax text unit clusters Ct,i : TextUnitCluster, where
i = 1, 2, . . . , imax, discovered by a clustering algorithm in clustering iteration t.

Operations:

• create(āinit: IntTextArchive, tinit: Integer, imax,init: Integer) constructs a new text unit clus-
tering. Precondition: None. Postcondition: Ct := {TextUnitCluster.create(āinit, tinit, 1),
TextUnitCluster.create(āinit, tinit, 2), . . . ,TextUnitCluster.create(āinit, tinit, imax,init}, t :=
tinit, and imax := imax,init.

• automatedLabelingOfClusters(m : IterationMetadata) assigns a default cluster label to
each qualitatively acceptable cluster in this text unit clustering. Precondition: The oper-
ation automatedRankingOfClusters must have been completed. Postcondition: For each
acceptable cluster in this text unit clustering, a default concept is instantiated that com-
prises the default cluster name. The operation setConcept() of ADT TextUnitCluster is
employed to set the concept of each intermediate text unit assigned to the corresponding
text unit cluster accordingly.

• automatedRankingOfClusters(m: IterationMetadata) partitions all text unit clusters in
this text unit clustering into qualitatively acceptable and unacceptable ones. Within each
category, text unit clusters are ranked by decreasing quality index. Precondition: None.
Postcondition: The ranking of clusters is visualized appropriately for inspection by the
domain expert.

• conceptAssignmentInApplicationMode(āA: IntTextArchive): IntTextArchive sets the con-
cept of all intermediate text units in āA that have been assigned to a qualitatively ac-
ceptable text unit cluster in classification iteration t of the knowledge application phase
of the DIAsDEM framework. Precondition: None. Postcondition: For all intermedi-
ate text units in āA assigned to a qualitatively acceptable text unit cluster Ct,j , where
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j = 1, 2, . . . , i and Ct,j .concept() 6= null, in classification iteration t, the concept is set to
Ct,j .concept(). The updated intermediate text archive āA is returned.

• interactiveReviewOfClusterLabels(m: IterationMetadata) executes an interactive proce-
dure that enables the domain expert to approve or correct automatically generated cluster
labels. Precondition: The operation automatedLabelingOfClusters must have been com-
pleted. Postcondition: The operation setConcept() of ADT TextUnitCluster is employed
to update the concept that comprises the cluster name of text unit clusters as proposed
by the domain expert.

• interactiveScreeningOfClusterRanking(m: IterationMetadata) executes an interactive pro-
cedure that enables the domain expert to approve or reject automatically generated clus-
ters quality assessments. Precondition: The operation automatedRankingOfClusters must
have been completed. Postcondition: The operations approveClusterQualityAssessment()
and rejectClusterQualityAssessment() of ADT TextUnitCluster are employed to update
text unit clusters with decisions made by the domain expert.

• numberOfIntTextUnits(): Integer returns the number of intermediate text units in this text
unit clustering. Precondition: None. Postcondition: size() := Ct,1.size() + Ct,2.size() +
. . . + Ct,imax

.size().
• qualityIndex(V: ControlledVocabulary, pRD : Real, pDD : Real) : Real returns the quality

index of this text unit clustering. Preconditions: V 6= null, V.numberOfDescriptors() > 0,
and pRD, pDD ∈ [0, 1]. Postcondition: qualityIndex(V, pRD, pDD, Ct) := numberOfIntText-
Units()−1 ·

∑imax

j=1 Ct,j .size() · Ct,j .qualityIndex(V, pRD, pDD, Ct) ∈ [0; 1].

B.34 ADT for Descriptor Weighting Schemata

Abstract Data Type: DescriptorWeightingScheme

Data: The abstract data type encapsulates a parameterized descriptor weighting scheme
(cf. Subsection 4.2.5) and, if already executed in discovery mode, invariant scheme-
specific information, like the collection frequency components of descriptor weights.
This descriptor weighting scheme is uniquely identified by the number of its asso-
ciated clustering iteration t: Integer in a certain DIAsDEM knowledge discovery
process, its name Name: String, its iteration-specific parameters Parameters: String,
and the iteration-specific controlled vocabulary V: ControlledVocabulary.

Operations:

• create(tinit : Integer, Nameinit : String, Parametersinit : String, Vinit : ControlledVocabulary)
constructs a new instance of the specified descritor weighting scheme. Precondition: tinit >
0 and Nameinit 6= null. Postcondition: t := tinit, Name := Nameinit, and Parameters :=
Parametersinit, and V := Vinit.

• createVectorsInApplicationMode(āA : IntTextArchive) : IntTextArchive creates text unit
vectors for intermediate text units in āA that are not yet assigned to a semantic con-
cept by utilizing existing invariant weighting components. Precondition: The operation
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createVectorsInDiscoveryMode must have been completed. Postcondition: For all inter-
mediate text units in createVectorsInApplicationMode(āA) that are not yet assigned to a
semantic concept, a text unit vector is created.

• createVectorsInDiscoveryMode(āT: IntTextArchive): IntTextArchive creates text unit vec-
tors for intermediate text units in āT that are not yet assigned to a semantic concept.
Invariant weighting components are computed and persistently stored for usage in the
knowledge application phase. Precondition: None. Postcondition: For all intermediate
text units in createVectorsInDiscoveryMode(āT) that are not yet assigned to a semantic
concept, a text unit vector is created.

B.35 ADT for Clustering Algorithms

Abstract Data Type: ClusteringAlgorithm

Data: The abstract data type encapsulates a parameterized clustering algorithm that
satisfies the DIAsDEM-specific requirements (cf. Subsection 4.3.2) and, if already
executed in discovery mode, the labels of discovered text unit clusters, and the max-
imum cluster identifier imax ∈ N. This clustering algorithm is uniquely identified
by the number of its associated clustering iteration t: Integer in a certain DIAs-
DEM knowledge discovery process, its name Name: String, and its iteration-specific
parameters Parameters: String.

Operations:

• create(tinit: Integer, Nameinit: String, Parametersinit: String) constructs a new instance of
the specified clustering algorithm. Precondition: tinit > 0 and Nameinit 6= null. Postcon-
dition: t := tinit, Name := Nameinit, and Parameters := Parametersinit.

• executeInApplicationMode(āA: IntTextArchive): IntTextArchive executes the parameter-
ized clustering algorithm in the knowledge application phase of the DIAsDEM framework.
The input data set to this clustering algorithm comprises only text unit vectors of interme-
diate text units in āA that are not yet assigned to a semantic concept. Each text unit vector
is assigned to one text unit cluster. Precondition: The operation executeInDiscoveryMode
must have been completed. Postcondition: For all intermediate text units in āA that are
not yet assigned to a semantic concept, the clustering iteration identifier is set to t and
the cluster identifier is set according to the new cluster assignment.

• executeInDiscoveryMode(āT: IntTextArchive): IntTextArchive executes the parameterized
clustering algorithm in the knowledge discovery phase of the DIAsDEM framework. The
input data set to this clustering algorithm comprises only text unit vectors of intermediate
text units in āT that are not yet assigned to a semantic concept. The maximum cluster
identifier imax is set. Descriptions of all discovered text unit clusters are persistently
stored for usage in the knowledge application phase. Precondition: None. Postcondition:
For all intermediate text units in āT that are not yet assigned to a semantic concept, the
clustering iteration identifier is set to t and the cluster identifier is set according to the
new cluster assignment.
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• maximumClusterIdentifier(): Integer returns the maximum cluster identifier. Precondi-
tion: The operation executeInDiscoveryMode must have been completed. Postcondition:
maximumClusterIdentifier() := imax.

B.36 ADT for Cluster Quality Criteria

Abstract Data Type: ClusterQualityCriteria

Data: The abstract data type encapsulates the dominant descriptor threshold pDD ∈
[0; 1], the rare descriptor threshold pRD ∈ [0; 1], the maximum descriptor cover-
age pmaxDC ∈ [0; 1], the minimum descriptor dominance pminDD ∈ [0; 1], and the
minimum cluster size pminCS ∈ N.

Operations:

• create(pDD,init : Real, pRD,init : Real, pmaxDC,init : Real, pminDD,init : Real, pminCS,init : Integer)
constructs new cluster quality criteria. Precondition: pDD,init ∈ [0; 1], pRD,init ∈ [0; 1],
pRD,init ≪ pDD,init pmaxDC,init ∈ [0; 1], pminDD,init ∈ [0; 1], and pminCS,init > 0. Postcondi-
tion: pDD := pDD,init, pRD := pRD,init pmaxDC := pmaxDC,init, pminDD := pminDD,init, and
pminCS := pminCS,init.

• dominantDescriptorThreshold(): Real returns the dominant descriptor threshold. Precon-
dition: None. Postcondition: dominantDescriptorThreshold() := pDD.

• maximumDescriptorCoverage(): Real returns the maximum descriptor coverage. Precon-
dition: None. Postcondition: maximumDescriptorCoverage() := pmaxDC.

• minimumClusterSize(): Integer returns the minimum cluster size. Precondition: None.
Postcondition: minimumClusterSize() := pminCS.

• minimumDescriptorDominance(): Real returns the minimum descriptor dominance. Pre-
condition: None. Postcondition: minimumDescriptorDominance() := pminDD.

• rareDescriptorThreshold() : Real returns the rare descriptor threshold. Precondition:
None. Postcondition: rareDescriptorThreshold() := pRD.

B.37 ADT for Iteration Metadata

Abstract Data Type: IterationMetadata

Data: The 5-tuple m := (t: Integer, w: DescriptorWeightingScheme, g: ClusteringAlgo-
rithm, q: ClusterQualityCriteria, Ct: TextUnitClustering) represents metadata spec-
ified by KDT and domain experts, created in a clustering iteration of the knowledge
discovery phase, and used in a classification iteration of the knowledge application
phase. An iteration metadata item comprises the iteration number t, as well as
the iteration-specific descriptor weighting scheme w, the iteration-specific cluster-
ing algorithm g, the iteration-specific DIAsDEM cluster quality criteria q, and the
iteration-specific text unit clustering Ct found in the knowledge discovery phase.
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Operations:

• create(tinit : Integer, winit : DescriptorWeightingScheme, ginit : ClusteringAlgorithm, qinit :
ClusterQualityCriteria) constructs new cluster quality criteria. Precondition: tinit > 0.
Postcondition: t := tinit, w := winit, g := ginit, and q := qinit, as well as Ct := null.

• clusteringAlgorithm(): ClusteringAlgorithm returns the iteration-specific clustering algo-
rithm. Precondition: None. Postcondition: clusteringAlgorithm() := g.

• clusterQualityCriteria(): ClusterQualityCriteria returns the iteration-specific DIAsDEM
cluster quality criteria. Precondition: None. Postcondition: clusterQualityCriteria() := q.

• descriptorWeightingScheme() : DescriptorWeightingScheme returns the iteration-specific
descriptor weighting scheme. Precondition: None. Postcondition: descriptorWeighting-
Scheme() := w.

• iterationNumber(): Integer returns the iteration number. Precondition: None. Postcondi-
tion: iterationNumber() := t.

• setTextUnitClustering(Ct,new : TextUnitClustering) sets the iteration-specific text unit
clustering. Precondition: None. Postcondition: Ct := Ct,new.

• textUnitClustering(): TextUnitClustering returns the iteration-specific text unit cluster-
ing. Precondition: None. Postcondition: textUnitClustering() := Ct.

B.38 ADT for KDT Process Metadata

Abstract Data Type: KdtProcessMetadata

Data: Let n := 〈m1, m2, . . . , m|n|〉 denote a sequence of iteration metadata items instanti-
ated during the iterative clustering step of one specific knowledge discovery process.
The iteration metadata item mt: IterationMetadata, where t = 1, 2, . . . , |n|, corre-
sponds to the tth clustering iteration of the respective KDT process. Furthermore,
P: SetOfNamedEntityTypes denotes the set of named entity types, whose instances
are extracted from text units in the focal KDT process. The 2-tuple k := (n, P)
represents the KDT process metadata item created and persistently stored during
knowledge discovery for subsequent usage during knowledge application.

Operations:

• create(Pinit : SetOfNamedEntityTypes) constructs a new KDT process metadata item.
Precondition: None. Postcondition: n := ε and P := Pinit.

• appendIterationMetadata(mnew : IterationMetadata) appends a new iteration metadata
item to the end of the sequence of iteration metadata items. Precondition: None. Post-
condition: Let t := |n| denote the length of sequence n prior to appending mnew such that
mt+1 := mnew. If t = 0, n := 〈mt+1〉. Otherwise, n := 〈m1, m2, . . . ,mt, mt+1〉.

• iterationMetadata(t: Integer): IterationMetadata returns the metadata item of the tth it-
eration of this KDT process. Precondition: t = 1, 2, . . . , |n|. Postcondition: iterationMeta-
data(t) := mt.
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• numberOfIterations() : Integer returns the number of iterations performed during the
pattern discovery step of the focal KDT process. Precondition: None. Postcondition:
numberOfIterations() := |n|.

• setOfNamedEntityTypes(): SetOfNamedEntityTypes returns set of named entity types,
whoses instances are extracted from text units in the focal KDT process. Precondition:
None. Postcondition: setOfNamedEntityTypes() := P.

243





C List of Relevant German Vocabulary

The following list comprises German nouns and verbs that are considered useful to under-
stand the meaning of Commercial Register entries in this case study. This list is mainly
based on a translation of the German Commercial Code by Peltzer et al. (2000), which
includes a concise introduction to the German Commercial Code as well.

Abberufung removal of sb. (e.g., removal of liquidator); e.g., see Peltzer et al. (2000,
p. 122)

Abspaltung split-off [of company and legal entity, resp.]; broader term: Spaltung (trans-
lated as division); e.g., see Benkert and Bürkle (1996, p. 180)

Aktiengesellschaft (AG) [German] stock corporation; e.g., see Peltzer and Hickinbotham
(1999, p. 35) and Peltzer et al. (2000, p. 43)

Aktionär shareholder of German stock corporation (Aktiengesellschaft, AG); e.g., cf.
Peltzer and Hickinbotham (1999, p. 37)

Amtsgericht [German] District Court; Commercial Registers are usually maintained by
the respective District Courts; e.g., cf. Peltzer et al. (2000, pp. 6–7)

Änderung change or modification of sth. (e.g., change of firm name or modification of
partnership agreement); e.g., see Peltzer et al. (2000, p. 61)

Aufhebung dissolution of sth. (e.g., dissolution of a branch office); e.g., cf. Peltzer et al.
(2000, pp. 42)

Auflösung dissolution of sth. (e.g., dissolution of commercial partnership]; e.g., see Pelt-
zer et al. (2000, p. 115)

Aufsichtsrat supervisory board of [German] stock corporation (AG); e.g., cf. Peltzer and
Hickinbotham (1999, pp. 15–22)

Ausscheiden withdrawal [of a partner], [a partner] withdrawing [from a partnership]; e.g.,
see Peltzer et al. (2000, p. 116)

Aufspaltung split-up [of company and legal entity, resp.]; broader term: Spaltung (trans-
lated as division); e.g., see Benkert and Bürkle (1996, p. 180)
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Ausgliederung [asset] drop-down [from company and legal entity, resp.]; broader term:
Spaltung (translated as division); e.g., see Benkert and Bürkle (1996, p. 180)

Beginn here: commencement (e.g., of a partnership); e.g., cf. Peltzer et al. (2000, p. 102)

Bedingtes Kapital contingent capital [of German stock corporation]; e.g., cf. Peltzer and
Hickinbotham (1999, p. 27)

beginnen here: to commence (e.g., a partnership); e.g., see Peltzer et al. (2000, p. 102)

Beherrschungsvertrag control agreement [between two enterprises]; e.g., see Peltzer and
Hickinbotham (1999, p. X)

Bekanntmachung information that has to be officially published by companies according
to the German Commercial Code; e.g., cf. Peltzer et al. (2000, p. 40)

Bekanntmachungsblatt publication newspaper; e.g., cf. Peltzer et al. (2000, pp. 40–41)

Bezugsrecht subscription right [of shareholders]; e.g., cf. Peltzer and Hickinbotham (1999,
p. 25)

Bundesanzeiger official German newspaper that regularly publishes Commercial Register
entries and corporate news; e.g., cf. Peltzer et al. (2000, p. 40)

Bestellung appointment of sb. (e.g., appointment of liquidator); e.g., see Peltzer et al.
(2000, p. 122)

Einteilung, Zerlegung sub-division [of the capital stock]; e.g., cf. Peltzer and Hickin-
botham (1999, p. 45)

Eintragung registration [in the Commercial Register]; e.g., see Peltzer et al. (2000, p. 40)

Eintritt joining [of a partner], [a partner] joining [a partnership]; e.g., see Peltzer et al.
(2000, p. 113)

Einzelkaufmann, Einzelkauffrau sole proprietorship; e.g., cf. Peltzer et al. (2000, p. 59)

Einzelvertretungsbefugnis, Einzelvertretungsmacht sole power of representation, sole
power to [legally] represent [a company]; antonym: Gesamtvertretungsbefugnis,
Gesamtvertretungsmacht (translated as joint power of representation); e.g., cf. Pelt-
zer et al. (2000, p. 109)

Erhöhung increase in sth. (e.g., increase in share capital or increase in capital contribu-
tion); e.g., cf. Peltzer et al. (2000, p. 132)

Erlöschen termination of sth. (e.g., termination of Prokura or power to represent a com-
pany or firm name); e.g., see Peltzer et al. (2000, p. 61 and p. 66)
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Errichtung establishment of sth. (e.g., establishment of a branch office); e.g., cf. Peltzer
et al. (2000, pp. 40–41)

erteilen here: to confer sth. (e.g., to confer Prokura or power to represent a company);
e.g., see Peltzer et al. (2000, p. 65)

Erteilung conferral of sth. (e.g., conferral of Prokura or power to represent a company);
e.g., see Peltzer et al. (2000, p. 66)

Firma here: [commercial] firm name; legal name of a company as registered in the respec-
tive Commercial Register; legal name under which a merchant transacts business
and executes agreements; a merchant may sue and may be sued under his firm name;
e.g., see Peltzer et al. (2000, p. 54)

Forderungen receivables; e.g., see Peltzer et al. (2000, p. 160)

Formwechsel change of [legal] form [of company and legal entity, resp.]; e.g., see Benkert
and Bürkle (1996, p. 180)

Fortführung continuation (e.g., continuation of business); e.g., see Peltzer et al. (2000,
p. 56)

Gegenstand des Unternehmens purpose of the enterprise; e.g., see Peltzer et al. (2000,
p. 35)

Genehmigtes Kapital authorized capital [of German stock corporation]; e.g., cf. Peltzer
and Hickinbotham (1999, p. 27)

Gesamtvertretungsbefugnis, Gesamtvertretungsmacht joint power of representation,
joint power to [legally] represent [a company]; antonym: Einzelvertretungsbefugnis,
Einzelvertretungsmacht (translated as sole power of representation); e.g., cf. Peltzer
et al. (2000, p. 109)

Geschäftsanteil business share [in German registered co-operative association]; e.g., see
Peltzer et al. (2000, p. 258)

Geschäftsführer, Geschäftsführerin managing director of German limited liability com-
pany (GmbH); e.g., see Peltzer et al. (2000, p. 47)

Geschäftsräume business premises; e.g., see Peltzer et al. (2000, p. 70)

Gesellschafter, Gesellschafterin partner in German commercial partnership (e.g., OHG
and KG) or in German limited liability company (GmbH); e.g., cf. Peltzer et al.
(2000, p. 56)

Gesellschaft here: [commercial] partnership and company, respectively; e.g., see Peltzer
et al. (2000, p. 101)
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Gesellschaft mit beschränkter Haftung (GmbH) [German] limited liability company;
e.g., see Peltzer et al. (1996, p. 67)

Gesellschafterversammlung meeting of [commercial] partners and share holders, respec-
tively; e.g., see Peltzer et al. (1996, p. 100)

Gesellschaftsvertrag [commercial] partnership agreement; e.g., cf. Peltzer et al. (2000,
p. 102)

Gewinnabführungsvertrag profit transfer agreement [between two or more enterprises];
e.g., see Peltzer and Hickinbotham (1999, p. X)

Grundkapital capital stock [of German stock corporation], synonym: Kapital (translated
as capital); e.g., see Peltzer and Hickinbotham (1999, p. 35)

Gründung here: formation of sth. (e.g., formation of an enterprise); e.g., see Peltzer and
Hickinbotham (1999, p. 45)

Gründungsaufwand formation expenses [to be borne by a stock corporation]; e.g., see
Peltzer and Hickinbotham (1999, p. 56)

Haftsumme liability sum [of co-operative member in German registered co-operative as-
sociation]; e.g., see Peltzer et al. (2000, p. 259)

Handelsregister Commercial Register; e.g., see Peltzer et al. (2000, p. 35)

Handelsregisternummer Commercial Register number; e.g., cf. Peltzer et al. (1996, p. 91)

Hauptniederlassung head office [of company]; e.g., see Peltzer et al. (2000, p. 41)

Hauptversammlung general meeting [of German stock corporation]; e.g., see Peltzer and
Hickinbotham (1999, p. 130)

Herabsetzung reduction of sth. (e.g., reduction of capital contribution); e.g., cf. Peltzer
et al. (2000, p. 133)

Inhaber, Inhaberin owner of [German] sole proprietorship; e.g., cf. Peltzer et al. (2000,
p. 58)

Inhaberaktie bearer share; e.g., cf. Peltzer and Hickinbotham (1999, p. 46)

Insolvenzverfahren insolvency proceedings; e.g., see Peltzer et al. (2000, p. 116)

Kapitalerhöhung capital increase; e.g., cf. Peltzer and Hickinbotham (1999, p. VIII)

Kapitalherabsetzung capital reduction; e.g., cf. Peltzer and Hickinbotham (1999, p. VIII)
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Kommanditeinlage capital contribution of limited partner in [German] limited partner-
ship (KG); e.g., see Peltzer et al. (2000, p. 118 and p. 132)

Kommanditist, Kommanditistin limited partner in [German] limited partnership (KG);
e.g., see Peltzer et al. (2000, p. 128)

Kommanditgesellschaft (KG) German limited partnership; e.g., see Peltzer et al. (2000,
p. 128)

Liquidator, Liquidatorin liquidator [of company]; e.g., see Peltzer et al. (2000, p. 115)

Löschung deletion (e.g., of firm names in the Commercial Register); e.g., cf. Peltzer et al.
(2000, p. 34 and p. 116)

Namensaktie registered share; e.g., cf. Peltzer and Hickinbotham (1999, p. 46)

Offene Handelsgesellschaft (OHG) [German] general commercial partnership; e.g., see
Peltzer et al. (2000, p. 101)

persönlich haftender Gesellschafter, persönlich haftende Gesellschafterin general
partner in [German] commercial partnership (e.g., OHG and KG) with unlimited
personal liability; e.g., see Peltzer et al. (2000, p. 17 and p. 67)

Prokura power to legally represent a company regulated by the German Commercial
Code; Prokura includes all judicial and non-judicial transactions that are related
to the operations of a commercial business; Prokura might be conferred with either
sole or joint power of representation; e.g., see Peltzer et al. (2000, pp. 65–67)

Prokurist, Prokuristin Prokura holder; e.g., see Peltzer et al. (2000, p. 67)

Rechtsform legal form [of company]; e.g., see Peltzer et al. (2000, p. 248)

Rechtsträger legal entity; e.g., see Benkert and Bürkle (1996, p. 180)

Sacheinlage contribution in kind; e.g., cf. Peltzer and Hickinbotham (1999, p. 47)

Satzung articles of association [of German stock corporation or German limited liability
company]; e.g., see Peltzer and Hickinbotham (1999, p. 35)

Selbstkontraktion exemption from the restrictions of §181 BGB (German Civil Code);
e.g., cf. Peltzer et al. (1996, p. 91)

Sicherheitsleistung provision of security, to provide security; e.g., see Peltzer et al. (2000,
p. 311)

Sitz domicile [of enterprise]; e.g., see Peltzer et al. (2000, p. 41)
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C List of Relevant German Vocabulary

Stammkapital share capital [of German limited liability company]; e.g., see Peltzer et al.
(1996, pp. 68–69)

Spaltung division [of company and legal entity, resp.]; e.g., see Benkert and Bürkle (1996,
p. 180)

Tätigkeit here: purpose of company; e.g., see Peltzer et al. (1996, p. 5)

übernehmender Rechtsträger acquiring legal entity; e.g., see Benkert and Bürkle (1996,
p. 181)

übertragender Rechtsträger transferor legal entity; e.g., see Benkert and Bürkle (1996,
p. 181)

Umwandlung reorganization [of company and legal entity, resp.]; e.g., see Benkert and
Bürkle (1996, p. 180)

Unternehmen enterprise; e.g., see Peltzer et al. (2000, p. 41)

Verbindlichkeiten liabilities; e.g., see Peltzer et al. (2000, p. 162)

Vermögensübertragung transfer of assets [between companies and legal entities, resp.];
e.g., see Benkert and Bürkle (1996, p. 180)

Verschmelzung merger [of companies and legal entities, resp.]; e.g., see Benkert and
Bürkle (1996, p. 180)

Vertretungsbefugnis, Vertretungsmacht power of representation, power to [legally] rep-
resent [a company]; e.g., see Peltzer et al. (2000, p. 111)

Vorstand managing board [of German stock corporation], synonym: management board;
e.g., see Peltzer and Hickinbotham (1999, p. 88) and Peltzer et al. (2000, p. 43)

Vorstandsmitglied member of the managing board [of German stock corporations], syn-
onym: member of the management board; e.g., see Peltzer and Hickinbotham (1999,
p. 88) and Peltzer et al. (2000, p. 62)

Zweigniederlassung branch, branch office [of company]; e.g., see Peltzer et al. (2000,
p. 41)

Zusammensetzung composition (e.g., composition of the managing board); e.g., see Pelt-
zer et al. (2000, p. 49)
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List of Abbreviations

ACM Association for Computing Machinery
ADT abstract data type
AI artificial intelligence
approx. approximately
BT broader term (thesaurus)
cf. confer, compare
CI competitive intelligence
DAML DARPA Agent Markup Language
DAML+OIL DARPA Agent Markup Language + Ontology Inference Layer
DARPA Defense Advanced Research Projects Agency
DFG Deutsche Forschungsgemeinschaft (German Research Foundation)
DIAsDEM name of research project
DTD document type definition
e.g. exempli gratia, for example
EUR Euro
geb. geboren am (born on)
GmbH Gesellschaft mit begrenzter Haftung (limited liability company)
GNU GNU’s Not Unix
HTML Hypertext Markup Language
i.e. id est, that is
ID identifier
IE information extraction
IEEE Institute of Electrical and Electronics Engineers
int. intermediate
IR information retrieval
ISIN International Securities Identification Number
ISO International Organization for Standardization
IT information technology
KDD knowledge discovery in databases
KDT knowledge discovery in textual databases
M&A mergers and acquisitions
MUC Message Understanding Conference
NE named entity
NewsML News Markup Language
NLP natural language processing



List of Abbreviations

NP noun phrase
NT narrower term (thesaurus)
OEM Object Exchange Model
OLAP online analytical processing
ORA-SS Object Relationship Attribute Data Model for Semistructured Data
OWL Web Ontology Language
p. page
pp. pages
RDF Resource Description Framework
RDFS Resource Description Framework Schema
regex regular expression
resp. respectively
s.t. subject to
sb. somebody
SEC Securities and Exchange Commission
smu. semantically marked-up
SGML Standard Generalized Markup Language
SNN shared nearest neighbor
SOM Self-Organizing Map
SQL Structured Query Language
sth. something
TDT topic detection and tracking
TEI Text Encoding Initiative
U.S. United States
UF used for non-preferred term (thesaurus)
URI Uniform Resource Identifier
USD United States Dollar
USE use for preferred term (thesaurus)
vs. versus
W3C Word Wide Web Consortium
WKN Wertpapierkennnummer (German securities identification number)
w.r.t. with respect to
WWW Word Wide Web
XIRQL XML IR Query Language
XML Extensible Markup Language
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Notation and List of Symbols

Abstract Data Types Let x : T denote a variable x of type T that can be either a
primitive data type described in Appendix B.1 (i.e., Boolean, Integer, Real, Char, and
arrays) or an abstract data type (e.g., String) specified in the remainder of Appendix B.
If T is an abstract data type and o(·) is an operation thereof, x.o(·) denotes the execution
of operation o(·) on the instantiation x of abstract data type T.

Arrays Let T denote a primitive or abstract data type defined in Appendix B.1. The
primitive data type that represents an array comprising components of type T is denoted
by T[]. Let x : T[] be a variable that represents an array of type T. A new array of
size i ∈ N is instantiated by the expression x := T[i]. Individual array components are
denoted by x[j], where j ∈ N and j ≤ i. The constant x.size denotes the invariant size of
the instantiated array x.

Multi-Sets Let the set X denote an arbitrary domain. A non-empty, finite multi-set
Y := {{y1, y2, . . . , yi}} is a collection comprising i ∈ N unordered, not necessarily distinct
elements y1, y2, . . . , yi such that yj ∈ X, where j = 1, 2, . . . , i. Analogous to sets, the
number of elements in multi-set Y (i.e., its cardinality) is denoted by |Y| ∈ N, and an
empty multi-set is denoted by ∅, such that |∅| = 0. Unlike sets, however, multi-sets may
comprise duplicate elements.

Relations Given n ∈ N arbitrary, not necessarily distinct, and atomic domains Di (i =
1, 2, . . . , n), relation R ⊆ D1 × . . . × Dn is defined as the Cartesian product of n domains
or as a subset thereof (cf. Codd, 1970, 1990). Each domain Di is associated with a
descriptive attribute name ai ∈ {a1, . . . , an}. The schema of relation R is denoted by
R(a1: D1, . . . , an: Dn). An n-ary element (d1, . . . , dn) ∈ R with attribute values di ∈ Di is
referred to as a tuple of relation R.

Sequences Let the set X denote an arbitrary domain. A non-empty sequence x :=
〈x1, x2, . . . , xi〉 is a tuple comprising i ∈ N ordered elements x1, x2, . . . , xi such that xj ∈ X,
where j = 1, 2, . . . , i. The number of elements |x| ∈ N in sequence x (i.e., its length)
is not necessarily constant. The jth element in sequence x is denoted by x[j], where
j = 1, 2, . . . , |x|. An empty sequence is denoted by ε (|ε| = 0).



Notation and List of Symbols

Tuples A k-tuple x := (x1, x2, . . . , xk) comprises k ∈ N ordered elements x1, x2, . . . , xk.
If the sets Xi, where i = 1, 2, . . . , k, denote k arbitrary domains, then x := (x1: X1, x2:
X2, . . . , xk: Xk) defines a k-tuple such that xi ∈ Xi. The number of elements |x| = k in
k-tuple x (i.e., its arity) is constant. Elements xi of k-tuple x may take the null value (i.e.,
xi = null) if xi is unknown, inappropriate, or non-existent. The ith element in k-tuple x
is denoted by x[i].

Vectors Let x = [ξ1, ξ2, . . . , ξm]T and y = [η1, η2, . . . , ηm]T denote two m-dimensional
column vectors, where x,y ∈ R

m and m ∈ N. The scalar product of vectors x and
y is denoted by x · y =

∑m
i=1 ξi · ηi. The Euclidean norm of vector x is denoted by

||x|| = (
∑m

i=1 ξ2
i )

1/2.

List of Symbols

:= assignment operator
∅ empty set

Â set of semantically marked-up text units
ǎ text archive
ā intermediate text archive
â semantically marked-up text archive
âAttribute estimate of XML attribute accuracy
âTagName estimate of XML tag name accuracy
Ct,i text unit cluster i ∈ N in clustering iteration t ∈ N

Ct text unit clustering in clustering iteration t ∈ N

D set of content descriptors
d content descriptor
df(·) document frequency
dist(·) distance
E set of named entities
Ē set of intermediate named entities
e named entity
ě canonical form of named entity e
ē intermediate named entity
f parameterizable KDT process flow

f̃ parameterized KDT process flow
g parameterizable KDT algorithm
g̃ parameterized KDT algorithm
idf(·) inverse document frequency
k KDT process metadata

ľ label
ln(·) logarithmus naturalis
m iteration metadata
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N set of natural numbers
nCC number of completely correct named entities
nFN number of false negatives
nFP number of false positives
nI number of incorrect named entities
nM number of missing named entities
nNE number of relevant named entities
nPC number of partially correct named entities
nTN number of true negatives
nTP number of true positives
null null value
ntf(·) normalized term frequency
O set of concepts
o sequence of concepts
o concept
P set of named entity types
p named entity type
pAS attribute support threshold
pDD dominant descriptor threshold
pmaxDC maximum descriptor coverage
pminCS minimum cluster size
pminDD minimum descriptor dominance
pRD rare descriptor threshold
p̂Attribute estimate of XML attribute precision
p̂TagName estimate of XML tag name precision
prox(·) proximity
q cluster quality criteria
R set of real numbers
r̂Attribute estimate of XML attribute recall
r̂TagName estimate of XML tag name recall
ř text unit layer
r̄ intermediate text unit layer
r̂ semantically marked-up text unit layer
s number of semantically marked-up text units in sample
ŝ conceptual document structure
sim(·) similarity
T text vectors by content descriptors matrix
t text vector
ť text document
t̄ intermediate text document
t̂ semantically marked-up text document
tf(·) term frequency
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Notation and List of Symbols

tudf(·) text unit descriptor frequency
tuf(·) text unit frequency
ǔ text unit
ü tokenized text unit
U text unit vectors by text unit descriptors matrix
u text unit vector (vector-space model)
~u text unit vector (abstract data type)
ū intermediate text unit
û semantically marked-up text unit
V controlled vocabulary
v controlled vocabulary term
k descriptor weighting schema
W̌ set of tokens
W̌ü set of tokens in tokenized text unit ü
w̌ token
x̂Docs array of semantically tagged XML documents
x̂DTD concept-based XML document type definition
Z set of integer numbers
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September 2003. ACTA Press.

Michael Steinbach, George Karypis, and Vipin Kumar. A comparison of document cluster-
ing techniques. In Workshop on Text Mining at the Sixth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 109–110, Boston, MA,
USA, August 2000.

Alexander Strehl, Joydeep Ghosh, and Raymond Mooney. Impact of similarity measures
on Web-page clustering. In Proceedings of Seventeenth National Conference on Articial
Intelligence: Workshop of Articial Intelligence for Web Search (AAAI 2000), pages
58–64, Austin, TX, USA, July 2000. AAAI Press.

Heiner Stuckenschmidt and Frank van Harmelen, editors. Information Sharing on the
Semantic Web. Advanced Information and Knowledge Processing. Springer-Verlag,
Berlin, Heidelberg, 2005.

Fabian M. Suchanek, Georgiana Ifrim, and Gerhard Weikum. Combining linguistic and
statistical analysis to extract relations from Web documents. In Proceedings of the 12th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 712–717. ACM Press, August 2006.

288



Bibliography

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. YAGO: A core of semantic
knowledge unifying WordNet and Wikipedia. In Proceedings of the 16th International
Conference on World Wide Web, pages 697–706, Banff, Alberta, Canada, 2007. ACM
Press.

Dan Sullivan. Document Warehousing and Text Mining: Techniques for Improving Busi-
ness Operations, Marketing, and Sales. John Wiley & Sons, New York, Chichester,
2001.

Marcelo Tallis. Semantic word processing for content authors. In Proceedings of the K-
CAP 2003 Workshop on Knowledge Markup and Semantic Annotation (SEMANNOT
2003), Sanibel, FL, USA, October 2003.

Marcelo Tallis, Neil M. Goldman, and Robert M. Balzer. The Briefing Associate: A role
for COTS applications in the Semantic Web. In Isabel F. Cruz, Stefan Decker, Jérôme
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Ich erkläre hiermit, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und
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